Brain evolution by brain pathway duplication.
Abstract
Understanding the mechanisms of evolution of brain pathways for complex behaviours
is still in its infancy. Making further advances requires a deeper understanding of
brain homologies, novelties and analogies. It also requires an understanding of how
adaptive genetic modifications lead to restructuring of the brain. Recent advances
in genomic and molecular biology techniques applied to brain research have provided
exciting insights into how complex behaviours are shaped by selection of novel brain
pathways and functions of the nervous system. Here, we review and further develop
some insights to a new hypothesis on one mechanism that may contribute to nervous
system evolution, in particular by brain pathway duplication. Like gene duplication,
we propose that whole brain pathways can duplicate and the duplicated pathway diverge
to take on new functions. We suggest that one mechanism of brain pathway duplication
could be through gene duplication, although other mechanisms are possible. We focus
on brain pathways for vocal learning and spoken language in song-learning birds and
humans as example systems. This view presents a new framework for future research
in our understanding of brain evolution and novel behavioural traits.
Type
Journal articleSubject
brain evolutionbrain pathway
duplication
parrots
song systems
speech
Animals
Biological Evolution
Birds
Brain
Humans
Neural Pathways
Vocalization, Animal
Permalink
http://hdl.handle.net/10161/11113Published Version (Please cite this version)
10.1098/rstb.2015.0056Publication Info
Chakraborty, M; & Jarvis, Erich David (2015). Brain evolution by brain pathway duplication. Philos Trans R Soc Lond B Biol Sci, 370(1684). 10.1098/rstb.2015.0056. Retrieved from http://hdl.handle.net/10161/11113.This is constructed from limited available data and may be imprecise. To cite this
article, please review & use the official citation provided by the journal.
Collections
More Info
Show full item recordScholars@Duke
Erich David Jarvis
Adjunct Professor in the Dept. of Neurobiology
Dr. Jarvis' laboratory studies the neurobiology of vocal communication. Emphasis is
placed on the molecular pathways involved in the perception and production of learned
vocalizations. They use an integrative approach that combines behavioral, anatomical,
electrophysiological and molecular biological techniques. The main animal model used
is songbirds, one of the few vertebrate groups that evolved the ability to learn vocalizations.
The generality of the discoveries is tested in other vocal

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy
Rights for Collection: Scholarly Articles
Related items
Showing items related by title, author, creator, and subject.
-
NSF workshop report: discovering general principles of nervous system organization by comparing brain maps across species.
Belgard, TG; Chen, CC; Davis, FP; Finlay, BL; Güntürkün, O; Hale, ME; Harris, Julie A; ... (27 authors) (J Comp Neurol, 2014-05-01)Efforts to understand nervous system structure and function have received new impetus from the federal Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative. Comparative analyses can contribute ... -
Effects of chronic mild traumatic brain injury on white matter integrity in Iraq and Afghanistan war veterans.
Cernak, I; Haswell, CC; Liu, C; Marx, Christine Elizabeth; Massoglia, D; McCarthy, G; MIRECC Work Group; ... (10 authors) (Hum Brain Mapp, 2013-11)Mild traumatic brain injury (TBI) is a common source of morbidity from the wars in Iraq and Afghanistan. With no overt lesions on structural MRI, diagnosis of chronic mild TBI in military veterans relies on obtaining an ... -
Global View of the Functional Molecular Organization of the Avian Cerebrum: Mirror Images and Functional Columns
Chen, C-C; Feenders, G; Hara, E; Horita, H; Howard, J; Jarvis, Erich David; Jarvis, Erich David; ... (19 authors) (JOURNAL OF COMPARATIVE NEUROLOGY, 2013-11)