Duke University Libraries
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
    • Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Brain evolution by brain pathway duplication.

    Thumbnail
    View / Download
    630.6 Kb
    Date
    2015-12-19
    Authors
    Chakraborty, M
    Jarvis, Erich David
    Repository Usage Stats
    185
    views
    120
    downloads
    Abstract
    Understanding the mechanisms of evolution of brain pathways for complex behaviours is still in its infancy. Making further advances requires a deeper understanding of brain homologies, novelties and analogies. It also requires an understanding of how adaptive genetic modifications lead to restructuring of the brain. Recent advances in genomic and molecular biology techniques applied to brain research have provided exciting insights into how complex behaviours are shaped by selection of novel brain pathways and functions of the nervous system. Here, we review and further develop some insights to a new hypothesis on one mechanism that may contribute to nervous system evolution, in particular by brain pathway duplication. Like gene duplication, we propose that whole brain pathways can duplicate and the duplicated pathway diverge to take on new functions. We suggest that one mechanism of brain pathway duplication could be through gene duplication, although other mechanisms are possible. We focus on brain pathways for vocal learning and spoken language in song-learning birds and humans as example systems. This view presents a new framework for future research in our understanding of brain evolution and novel behavioural traits.
    Type
    Journal article
    Subject
    brain evolution
    brain pathway
    duplication
    parrots
    song systems
    speech
    Animals
    Biological Evolution
    Birds
    Brain
    Humans
    Neural Pathways
    Vocalization, Animal
    Permalink
    http://hdl.handle.net/10161/11113
    Published Version (Please cite this version)
    10.1098/rstb.2015.0056
    Publication Info
    Chakraborty, M; & Jarvis, Erich David (2015). Brain evolution by brain pathway duplication. Philos Trans R Soc Lond B Biol Sci, 370(1684). 10.1098/rstb.2015.0056. Retrieved from http://hdl.handle.net/10161/11113.
    This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
    Collections
    • Scholarly Articles
    More Info
    Show full item record

    Scholars@Duke

    Jarvis

    Erich David Jarvis

    Adjunct Professor in the Dept. of Neurobiology
    Dr. Jarvis' laboratory studies the neurobiology of vocal communication. Emphasis is placed on the molecular pathways involved in the perception and production of learned vocalizations. They use an integrative approach that combines behavioral, anatomical, electrophysiological and molecular biological techniques. The main animal model used is songbirds, one of the few vertebrate groups that evolved the ability to learn vocalizations. The generality of the discoveries is tested in other vocal
    Open Access

    Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

    Rights for Collection: Scholarly Articles

    Related items

    Showing items related by title, author, creator, and subject.

    • Thumbnail

      NSF workshop report: discovering general principles of nervous system organization by comparing brain maps across species. 

      Belgard, TG; Chen, CC; Davis, FP; Finlay, BL; Güntürkün, O; Hale, ME; Harris, Julie A; ... (27 authors) (J Comp Neurol, 2014-05-01)
      Efforts to understand nervous system structure and function have received new impetus from the federal Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative. Comparative analyses can contribute ...
    • Thumbnail

      Effects of chronic mild traumatic brain injury on white matter integrity in Iraq and Afghanistan war veterans. 

      Cernak, I; Haswell, CC; Liu, C; Marx, Christine Elizabeth; Massoglia, D; McCarthy, G; MIRECC Work Group; ... (10 authors) (Hum Brain Mapp, 2013-11)
      Mild traumatic brain injury (TBI) is a common source of morbidity from the wars in Iraq and Afghanistan. With no overt lesions on structural MRI, diagnosis of chronic mild TBI in military veterans relies on obtaining an ...
    • Thumbnail

      Global View of the Functional Molecular Organization of the Avian Cerebrum: Mirror Images and Functional Columns 

      Chen, C-C; Feenders, G; Hara, E; Horita, H; Howard, J; Jarvis, Erich David; Jarvis, Erich David; ... (19 authors) (JOURNAL OF COMPARATIVE NEUROLOGY, 2013-11)
     

     

    Browse

    All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

    My Account

    LoginRegister

    Statistics

    View Usage Statistics