Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Plasmonic Gallium Nanoparticles -- Attributes and Applications

Thumbnail
View / Download
22.9 Mb
Date
2009
Author
Wu, Pae
Advisor
Brown, April S
Repository Usage Stats
784
views
503
downloads
Abstract

Expanding the role of plasmonics in tomorrow's technology requires a broader knowledge base from which to develop such applications today. Several limitations to the current plasmonics field limit progress to incremental advances within a narrow set of materials and techniques rather than developing non-traditional metals and flexible growth and characterization methods. The work described herein will provide an introduction to the burgeoning field of spectroscopic ellipsometry for plasmonic characterization; in particular, the power of its real-time monitoring capabilities and flexibility will be demonstrated. More importantly, a novel plasmonic metal, gallium, is investigated in detail. Critical characteristics of gallium for an array of applications include its tunability over a wide spectral range, phase stability across a wide temperature range, plasmon stability even after air exposure, and an ultra high vacuum evaporation growth process enabling simple, alloyed nanostructure development. Deeper scientific investigation of the underlying ripening mechanisms driving gallium nanoparticle formation and in concert with in situ alloying paves the way for future work contributing to the development of advanced nanostructured alloys. Finally, this work demonstrates the first example of gallium nanoparticle-enhanced Raman spectroscopy - an area craving materials innovation. While the specific application of gallium for SERS detection is interesting, the far-reaching implication lies in the demonstrated potential for plasmonic gallium nanoparticles' ultimate use in a wider variety of applications enhanced by nanoscale materials.

Type
Dissertation
Department
Electrical and Computer Engineering
Subject
Engineering, Electronics and Electrical
Engineering, Materials Science
gallium
nanoparticle
plasmon
Permalink
https://hdl.handle.net/10161/1121
Citation
Wu, Pae (2009). Plasmonic Gallium Nanoparticles -- Attributes and Applications. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/1121.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University