Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dual-energy micro-CT functional imaging of primary lung cancer in mice using gold and iodine nanoparticle contrast agents: a validation study.

Thumbnail
View / Download
7.2 Mb
Date
2014
Authors
Ashton, Jeffrey R
Clark, Darin P
Moding, Everett J
Ghaghada, Ketan
Kirsch, David G
West, Jennifer L
Badea, Cristian T
Repository Usage Stats
202
views
242
downloads
Abstract
PURPOSE: To provide additional functional information for tumor characterization, we investigated the use of dual-energy computed tomography for imaging murine lung tumors. Tumor blood volume and vascular permeability were quantified using gold and iodine nanoparticles. This approach was compared with a single contrast agent/single-energy CT method. Ex vivo validation studies were performed to demonstrate the accuracy of in vivo contrast agent quantification by CT. METHODS: Primary lung tumors were generated in LSL-Kras(G12D); p53(FL/FL) mice. Gold nanoparticles were injected, followed by iodine nanoparticles two days later. The gold accumulated in tumors, while the iodine provided intravascular contrast. Three dual-energy CT scans were performed-two for the single contrast agent method and one for the dual contrast agent method. Gold and iodine concentrations in each scan were calculated using a dual-energy decomposition. For each method, the tumor fractional blood volume was calculated based on iodine concentration, and tumor vascular permeability was estimated based on accumulated gold concentration. For validation, the CT-derived measurements were compared with histology and inductively-coupled plasma optical emission spectroscopy measurements of gold concentrations in tissues. RESULTS: Dual-energy CT enabled in vivo separation of gold and iodine contrast agents and showed uptake of gold nanoparticles in the spleen, liver, and tumors. The tumor fractional blood volume measurements determined from the two imaging methods were in agreement, and a high correlation (R(2) = 0.81) was found between measured fractional blood volume and histology-derived microvascular density. Vascular permeability measurements obtained from the two imaging methods agreed well with ex vivo measurements. CONCLUSIONS: Dual-energy CT using two types of nanoparticles is equivalent to the single nanoparticle method, but allows for measurement of fractional blood volume and permeability with a single scan. As confirmed by ex vivo methods, CT-derived nanoparticle concentrations are accurate. This method could play an important role in lung tumor characterization by CT.
Type
Journal article
Subject
Animals
Biomarkers, Tumor
Blood Volume
Contrast Media
Gold
Iodine
Liposomes
Lung
Lung Neoplasms
Mice
Microvessels
Nanoparticles
Radionuclide Imaging
Reproducibility of Results
Tumor Burden
X-Ray Microtomography
Permalink
https://hdl.handle.net/10161/11255
Published Version (Please cite this version)
10.1371/journal.pone.0088129
Publication Info
Ashton, Jeffrey R; Clark, Darin P; Moding, Everett J; Ghaghada, Ketan; Kirsch, David G; West, Jennifer L; & Badea, Cristian T (2014). Dual-energy micro-CT functional imaging of primary lung cancer in mice using gold and iodine nanoparticle contrast agents: a validation study. PLoS One, 9(2). pp. e88129. 10.1371/journal.pone.0088129. Retrieved from https://hdl.handle.net/10161/11255.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Badea

Cristian Tudorel Badea

Professor in Radiology
Our lab's research focus lies primarily in developing novel quantitative imaging systems, reconstruction algorithms and analysis methods.  My major expertise is in preclinical CT. Currently, we are particularly interested in developing novel strategies for spectral CT imaging using nanoparticle-based contrast agents for theranostics (i.e. therapy and diagnostics). We are also engaged in developin
Clark

Darin Clark

Assistant Professor in Radiology
Kirsch

David Guy Kirsch

Barbara Levine University Distinguished Professor
My clinical interests are the multi-modality care of patients with bone and soft tissue sarcomas and developing new sarcoma therapies. My laboratory interests include utilizing mouse models of cancer to study cancer and radiation biology in order to develop new cancer therapies in the pre-clinical setting.
West

Jennifer L West

Adjunct Professor of Biomedical Engineering
Jennifer West’s research in biomaterials and tissue engineering involves the synthesis, development, and application of novel, biofunctional materials, and the use of biomaterials and engineering approaches to study biological problems. Current projects include the design of ECM-mimetic hydrogel materials, novel microfabrication strategies for biomimetic patterning, and nanoparticle theranostics.
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University