Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

FEEDBACKS of NITROGEN CYCLING and INVASION with the NON-NATIVE PLANT, <italic>MICROSTEGIUM VIMINEUM</Italic>, in RIPARIAN WETLANDS

Thumbnail
View / Download
4.4 Mb
Date
2009
Author
DeMeester, Julie E.
Advisor
Richter, Daniel D.
Repository Usage Stats
450
views
920
downloads
Abstract

<p>Invasive species are rapidly expanding in riparian wetlands while concurrently anthropogenic causes are increasing nitrogen (N) into these ecosystems. <italic>Microstegium vimineum (Microstegium) </italic> is a particularly abundant invasive grass in the Southeast United States. To evaluate impacts of <italic>Microstegium</italic> on both plant diversity and N cycling in a riparian floodplain, paired plots of <italic>Microstegium</italic> hand-weeded and unweeded were established for three years. Plots without <italic>Microstegium</italic> increased from 4 to 15 species m<super>-2</super> and 90% of the newly establishing species were native. The <italic>Microstegium</italic> community accumulated approximately half the annual N in biomass of the diverse community, 5.04 versus 9.36 g-N m<super>-2</super> year<super>-1</super>, respectively (p=0.05). Decomposition and release of N from <italic>Microstegium</italic> detritus was much less than in the diverse community, 1.19 versus 5.24 g-N m<super>-2</super> year<super>-1</super>. Rates of soil N mineralization estimated by in-situ incubations were relatively similar in all plots. While <italic>Microstegium</italic> invasion appears to greatly diminish within-ecosystem circulation of N through the under-story plants, it might increase ecosystem N losses through enhanced denitrification (due to lower redox potentials under Microstegium plots). Microstegium removal ceased in the fourth growing season and formerly weeded plots increased to 59% (&plusmn; 11% SE) Microstegium cover and species richness decreased to <8 species m<super>-2</super>.

</p>

<p>To learn how <italic>Microstegium</italic> responds to increased N, we conducted a greenhouse competition experiment between <italic>Microstegium</italic> and four native plants across an N gradient. There was a unique competition outcome in each species combination, yet <italic>Microstegium</italic> was most dominant in the high levels of N.

</p>

<p>Last, we disturbed a floodplain similar to wetland restoration disturbance and tracked available N. We also established a native community of plants with and without <italic>Microstegium</italic> in three levels of N. Disturbance to the floodplain dramatically increased inorganic N, especially in the form of NO3 which was five times higher in the disturbed floodplain than the undisturbed floodplain. N levels remained elevated for over a year. <italic>Microstegium</italic> was N responsive, but did not show negative effects to the planted vegetation until the second year. Ironically, restoration activities are increasing available N, and favoring invasive species which in turn detracts from restoration success.

Type
Dissertation
Department
Environment
Subject
Biology, Ecology
Environmental Sciences
Biogeochemistry
Competition
Diversity
Microstegium vimineum
Nitrogen cycling
Restoration
Riparian wetlands
Permalink
https://hdl.handle.net/10161/1129
Citation
DeMeester, Julie E. (2009). FEEDBACKS of NITROGEN CYCLING and INVASION with the NON-NATIVE PLANT, <italic>MICROSTEGIUM VIMINEUM</Italic>, in RIPARIAN WETLANDS. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/1129.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University