Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Exploring the Interface Between Macroorganisms and Microorganisms: Biochemical, Ecological, and Evolutionary Contexts

Thumbnail
View / Download
18.6 Mb
Date
2015
Author
Essock-Burns, Tara
Advisor
Rittschof, Dan
Repository Usage Stats
260
views
109
downloads
Abstract

The focus of this dissertation is the extension of the innate immune response in wound healing and non-wound healing contexts. I am interested in interactions at the interface between macroorganisms and microorganisms from marine/aqueous environments. This dissertation explored two aspects of the interactions: 1) the presence and function of macroorganism secretions and 2) the role of secretions in managing microfouling on macroorganism surfaces. Particularly of interest are how barriers are biochemically reinforced to mitigate microfouling and the potential consequences of a breach in those barriers. The innate immune response, an evolutionary conserved system in vertebrates and invertebrates, provides an evolutionary context for developing the hypotheses.

In this dissertation the biochemical composition and uses of crustacean secretions are explored for barnacles, fiddler crabs and blue crabs. Fluids of interest were secretions released during barnacle settlement and metamorphosis and those collected from living adult barnacles, fluids on fiddler crab sensory appendages including dactyl washings and buccal secretions, and fluids from blue crab egg masses. The biochemical composition was determined using a combination of fluorescent probes and confocal microscopy, proteomics, and enzyme-specific substrates with a spectrophotometer.

I demonstrated that self-wounding is inherent to the critical period of settlement and metamorphosis, in barnacles. Wounding occurs during cuticle expansion and organization and generates proteinaceous secretions, which function as a secondary mode of attachment that facilitates the transition to a sessile juvenile. I showed extensive proteomic evidence for components of all categories of the innate immune response, especially coagulation and pathogen defense during attachment and metamorphosis. This work provides insight into wound healing mechanisms that facilitate coagulation of proteinaceous material and expands the knowledge of potential glue curing mechanisms in barnacles.

In order to test macroorganism secretions in a non-wound healing context, I examined fluids sampled from body parts that macroorganisms must keep free of microorganisms. I showed that two types of decapod crustaceans can physically manage microorganisms on most parts of their body, but certain parts are particularly sensitive or difficult to clean mechanically. I examined sensory regions on the fiddler crab, including dactyls that are important for chemoreception and the buccal cavity that is used to remove microorganisms from sand particles, and blue crab egg mass fluids that protect egg masses from fouling through embryo development.

This dissertation explores organismal interactions across scales in size, space, and time. The findings from the barnacle work inform mechanisms of attachment and glue curing, both central to understanding bioadhesion. The work on fiddler crabs and blue crabs contributes to our understanding of chemoreception of feeding and reproductive behaviors.

The work presented here highlights how biological secretions from macroorganisms serve multifaceted roles. In cases of physical breaches of barriers, or wounding, secretions coagulate to obstruct loss of hemolymph and have antimicrobial capabilities to prevent infection by microorganisms. In non-wounding cases, secretions remove microorganisms from surfaces, whether that is on the body of the macroorganism or in the immediate environment.

Type
Dissertation
Department
Marine Science and Conservation
Subject
Ecology
Biology
Molecular biology
biofilm
crustaceans
enzymes
innate immune
wound healing
Permalink
https://hdl.handle.net/10161/11319
Citation
Essock-Burns, Tara (2015). Exploring the Interface Between Macroorganisms and Microorganisms: Biochemical, Ecological, and Evolutionary Contexts. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/11319.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University