Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Topoisomerase 1-dependent Mutagenesis in Saccharomyces cerevisiae

Thumbnail
View / Download
22.9 Mb
Date
2015
Author
Cho, Jang-Eun
Advisor
Jinks-Robertson, Sue
Repository Usage Stats
218
views
49
downloads
Abstract

Topoisomerase 1 (Top1) resolves transcription-associated supercoils by generating transient single-strand breaks in DNA and is a major source of transcription-associated mutagenesis in Saccharomyces cerevisiae. Top1 generates a distinctive mutation signature characterized by deletions in short, tandem repeats, and a similar signature is associated with ribonucleoside monophosphates (rNMPs) in DNA. DNA polymerases incorporate rNMPs into genomic DNA, and such rNMPs are efficiently removed in an error-free manner by ribonuclease (RNase) H2. In the absence of RNase H2, persistent rNMPs give rise to short deletions via a mutagenic process initiated by a Top1 incision at an rNMP. There is only partial overlap, however, between Top1-dependent deletion hotspots identified in highly transcribed DNA and those associated with rNMPs, suggesting the existence of both rNMP-dependent and rNMP-independent events. Here I present evidence that rNMP-independent hotspots reflect processing of a trapped Top1 cleavage complex (Top1cc), and that rNMP-dependent hotspots reflect sequential Top1 reactions. A sequential-cleavage model for rNMP-dependent deletions is tested in vivo and in vitro, employing Top1 cleavage and ligation assays. In addition, I report that rNMP-dependent hotspot activity is significantly enhanced when Top1 incises the non-transcribed strand of an actively transcribing reporter gene. Finally, I describe a novel type of mutagenesis that reflects repair of multiple Top1ccs. Specifically, expression of a mutant Top1 with reduced ligation activity (Top1-T722A) caused large deletion mutations that are distinct from Top1-dependent short deletions. Genetic data indicates that Top1-T722A-dependent large deletions are non-homologous end joining events.

Type
Dissertation
Department
Molecular Genetics and Microbiology
Subject
Genetics
Molecular biology
Biology
Ribonucleotide
rNMP
Topoisomerase 1
Transcription-associated Mutagenesis
Permalink
https://hdl.handle.net/10161/11386
Citation
Cho, Jang-Eun (2015). Topoisomerase 1-dependent Mutagenesis in Saccharomyces cerevisiae. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/11386.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Support the Libraries
Duke University