Flexible register management using reference counting

Loading...
Thumbnail Image

Date

2012-05-03

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

471
views
536
downloads

Citation Stats

Abstract

Conventional out-of-order processors that use a unified physical register file allocate and reclaim registers explicitly using a free list that operates as a circular queue. We describe and evaluate a more flexible register management scheme - reference counting. We implement reference counting using a bit-matrix with a column for every physical register and a row for every entity that can hold a physical register, e.g., an in-flight instruction. Columns are NOR'ed together to create a bitvector free list from which registers are allocated using priority encoders. We describe reference counting designs that support micro-architectural techniques including register file power gating, dynamic register move elimination, register file checkpointing, and latency tolerant execution. Performance and circuit simulation show that the energy cost of reference counting is low and is easily recouped by the savings of the techniques it enables. © 2012 IEEE.

Department

Description

Provenance

Subjects

Citation

Published Version (Please cite this version)

10.1109/HPCA.2012.6169033

Scholars@Duke

Hilton

Andrew Douglas Hilton

Professor of the Practice in the Department of Electrical and Computer Engineering

Drew Hilton is a Professor of the Practice in Electrical and Computer Engineering, as well as Pratt’s Director of Innovation in Computing Education.

His main focus is on teaching professional-level programming skills to ECE’s master's students to prepare them for software engineering careers.

Professor Hilton also teaches a 3-week introduction to Programming Python for Duke's Master in Interdisciplinary Data Science, and Duke's Center for Computational Thinking.

He has two Coursera specializations, one in Java, and another in C.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.