Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

CPROB: Checkpoint processing with opportunistic minimal recovery

Thumbnail
View / Download
123.2 Kb
Date
2009-11-23
Authors
Hilton, A
Eswaran, N
Roth, A
Repository Usage Stats
153
views
221
downloads
Abstract
CPR (Checkpoint Processing and Recovery) is a physical register management scheme that supports a larger instruction window and higher average IPC than conventional ROB-style register management. It does so by restricting mis-speculation recovery to checkpoints created at rename, and leveraging this restriction to aggressively reclaim registers that don't appear in checkpoints. The cost of CPR is checkpoint overhead, which is incurred when a mis-speculation occurs on an instruction for which a checkpoint was not created a priori. Here, CPR must recover to the immediately older checkpoint, squashing instructions older than the mis-speculation itself. In contrast, a ROB processor performs minimal recovery and only squashes instructions younger than the mis-speculation. CPROB is a hybrid register management scheme that preserves CPR's aggressive reclamation while opportunistically minimizing checkpoint overhead. CPROB extends CPR to track and hold the registers needed to perform minimal recovery to un-executed branches within each checkpoint. Recovery registers are held on a best-effort basis only. A checkpoint's recovery registers can be freed spontaneously when all branches in the checkpoint execute. They can also be aggressively victimized if dispatch needs registers to proceed. CPROB naturally adapts the register reclamation policy to dynamic branch behavior. When branch mis-predictions are infrequent and registers are needed to support a large window, CPROB victimizes registers and behaves like CPR. When mis-predictions are frequent and the window is small, CPROB holds on to registers and behaves like ROB. As a result, it out-performs both CPR and ROB for a given program. This performance improvement, combined with reduced checkpoint overhead, makes CPROB more energy-efficient than either ROB or CPR.
Type
Conference
Permalink
https://hdl.handle.net/10161/11638
Published Version (Please cite this version)
10.1109/PACT.2009.42
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Hilton

Andrew Douglas Hilton

Professor of the Practice in the Department of Electrical and Computer Engineering
Drew Hilton is an Associate Professor of the Practice in Electrical and Computer Engineering, as well as Pratt’s Director of Innovation in Computing Education. His main focus is on teaching professional-level programming skills to ECE’s master's students to prepare them for software engineering careers. Professor Hilton also teaches a 3-week introduction to Programming Python for Duke's Master in Interdisciplinary Data Science, and Duke's Center for Computatio
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University