Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The dynamics of successive induction in larval zebrafish.

Thumbnail
View / Download
301.3 Kb
Date
2010-09
Authors
Staddon, JER
MacPhail, RC
Padilla, S
Repository Usage Stats
147
views
123
downloads
Abstract
Charles Sherrington identified the properties of the synapse by purely behavioral means-the study of reflexes-more than 100 years ago. They were subsequently confirmed neurophysiologically. Studying reflex interaction, he also showed that activating one reflex often facilitates another, antagonistic one: successive induction, which has since been demonstrated in a wide range of species, from aphids to locusts to dogs and humans. We show a particularly orderly example in zebrafish (Danio rerio) larvae; the behavior (locomotion) of larvae is low in dark and intermediate in light, but low in light and substantially higher in dark when dark followed light. A quantitative model of a simple dynamic process is described that readily captures the behavior pattern and the effects of a number of manipulations of lighting conditions.
Type
Journal article
Subject
activity
contrast
dynamics
habituation
light
reflex
zebrafish
Animals
Darkness
Lighting
Models, Biological
Motor Activity
Neuropsychological Tests
Photoperiod
Zebrafish
Permalink
https://hdl.handle.net/10161/11789
Published Version (Please cite this version)
10.1901/jeab.2010.94-261
Publication Info
Staddon, JER; MacPhail, RC; & Padilla, S (2010). The dynamics of successive induction in larval zebrafish. J Exp Anal Behav, 94(2). pp. 261-266. 10.1901/jeab.2010.94-261. Retrieved from https://hdl.handle.net/10161/11789.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Stephanie Padilla

Instructor in the Nicholas School of the Environment
Staddon

John E. R. Staddon

James B. Duke Distinguished Professor Emeritus of Psychology and Neuroscience
Until my retirement in 2007, my laboratory did experimental research on learning and adaptive behavior, mostly with animals: pigeons, rats, fish, parakeets.  We were particularly interested in timing and memory, feeding regulation, habituation and the ways in which pigeons and rats adapt to reward schedules. The aim  is to arrive at simple models for learning that can help to identify the underlying neural mechanisms. I continue to do theoretical and historical work on the power law in
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University