Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Undergraduate Honors Theses and Student papers
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Undergraduate Honors Theses and Student papers
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hs-27, a Novel Hsp90 Inhibitor, Exhibits Diagnostic and Therapeutic Potential in Triple Negative Breast Cancer

Thumbnail
View / Download
957.5 Kb
Date
2016-04-22
Author
Belonwu, Stella
Advisor
Ramanujam, Nirmala
Repository Usage Stats
311
views
296
downloads
Abstract
Heat-shock protein 90 (Hsp90) is a molecular chaperone that is ubiquitously expressed in all cell types and essential for maintaining cell homeostasis by assisting in protein folding, de-aggregation, and degradation. Hsp90 is upregulated in all breast tumors, where it is present on the cell surface, unlike in normal cells, and supports signal transduction pathways important for tumor progression. Hence, Hsp90 has emerged as an attractive anti-cancer target. Triple negative breast cancer (TNBC) is a highly aggressive and difficult to treat subtype of breast cancer. Because TNBC is unresponsive to hormone therapies, there are no good therapy options available. Thus, Hsp90 may serve as a reasonable target for TNBC. Hs-27 is a novel Hsp90 inhibitor made by Dr. Timothy Haystead of Duke University’s Department of Pharmacology and Cancer Biology. It was developed with a fluorescein contrast agent, which makes it suitable for diagnostics. Preliminary experiments with Hs-27 with breast cancer cell lines of different receptor subtypes show that it binds to ectopically expressed Hsp90 in tumor cells. In vitro therapy experiments also show that Hs-27 down-regulates client proteins implicated in tumor growth. In this study, I further establish Hs-27’s diagnostic and therapeutic ability in vivo through hyperspectral and fluorescence imaging in dorsal skinfold window chamber tumor models in mice. Largely, I observed that at lower doses, Hs-27 allows for real-time, non-invasive imaging for cancer detection and at higher doses has the potential for therapeutic benefits.
Type
Honors thesis
Department
Biology
Subject
Hsp90; Breast cancer; Fluorescent Imaging
Permalink
https://hdl.handle.net/10161/11837
Citation
Belonwu, Stella (2016). Hs-27, a Novel Hsp90 Inhibitor, Exhibits Diagnostic and Therapeutic Potential in Triple Negative Breast Cancer. Honors thesis, Duke University. Retrieved from https://hdl.handle.net/10161/11837.
Collections
  • Undergraduate Honors Theses and Student papers
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Undergraduate Honors Theses and Student papers


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University