Skip to main content
Duke University Libraries
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
    • Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    High-Resolution In Situ Oxygen-Argon Studies of Surface Biological and Physical Processes in the Polar Oceans

    Thumbnail
    View / Download
    28.5 Mb
    Date
    2016
    Author
    Eveleth, Rachel Katherine
    Advisor
    Cassar, Nicolas
    Repository Usage Stats
    171
    views
    146
    downloads
    Abstract

    The Arctic Ocean and Western Antarctic Peninsula (WAP) are the fastest warming regions on the planet and are undergoing rapid climate and ecosystem changes. Until we can fully resolve the coupling between biological and physical processes we cannot predict how warming will influence carbon cycling and ecosystem function and structure in these sensitive and climactically important regions. My dissertation centers on the use of high-resolution measurements of surface dissolved gases, primarily O2 and Ar, as tracers or physical and biological functioning that we measure underway using an optode and Equilibrator Inlet Mass Spectrometry (EIMS). Total O2 measurements are common throughout the historical and autonomous record but are influenced by biological (net metabolic balance) and physical (temperature, salinity, pressure changes, ice melt/freeze, mixing, bubbles and diffusive gas exchange) processes. We use Ar, an inert gas with similar solubility properties to O2, to devolve distinct records of biological (O2/Ar) and physical (Ar) oxygen. These high-resolution measurements that expose intersystem coupling and submesoscale variability were central to studies in the Arctic Ocean, WAP and open Southern Ocean that make up this dissertation.

    Key findings of this work include the documentation of under ice and ice-edge blooms and basin scale net sea ice freeze/melt processes in the Arctic Ocean. In the WAP O2 and pCO2 are both biologically driven and net community production (NCP) variability is controlled by Fe and light availability tied to glacial and sea ice meltwater input. Further, we present a feasibility study that shows the ability to use modeled Ar to derive NCP from total O2 records. This approach has the potential to unlock critical carbon flux estimates from historical and autonomous O2 measurements in the global oceans.

    Type
    Dissertation
    Department
    Earth and Ocean Sciences
    Subject
    Biogeochemistry
    Chemical oceanography
    Arctic Ocean
    climate change
    oxygen
    Southern Ocean
    Permalink
    https://hdl.handle.net/10161/12180
    Citation
    Eveleth, Rachel Katherine (2016). High-Resolution In Situ Oxygen-Argon Studies of Surface Biological and Physical Processes in the Polar Oceans. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/12180.
    Collections
    • Duke Dissertations
    More Info
    Show full item record
    Creative Commons License
    This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

    Rights for Collection: Duke Dissertations

     

     

    Search Scope

    Browse

    All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

    My Account

    LoginRegister

    Statistics

    View Usage Statistics