Dynamics of the Disk-Pendulum Coupled System With Vertical Excitation
This paper investigates the static and dynamic characteristics of the semi-elliptical rocking disk on which a pendulum pinned. This coupled system’s response is also analyzed analytically and numerically when a vertical harmonic excitation is applied to the bottom of the rocking disk. Lagrange’s Equation is used to derive the motion equations of the disk-pendulum coupled system. The second derivative test for the system’s potential energy shows how the location of the pendulum’s pivotal point affects the number and stability of equilibria, and the change of location presents different bifurcation diagrams for different geometries of the rocking disk. For both vertically excited and unforced cases, the coupled system shows chaos easily, but the proper chosen parameters can still help the system reach and keep the steady state. For the steady state of the vertically excited rocking disk without a pendulum, the variation of the excitation’s amplitude and frequency result in the hysteresis for the amplitude of the response. When a pendulum is pinned on the rocking disk, three major categories of steady states are presently in the numerical way.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Rights for Collection: Masters Theses
Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info