Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Emergence of limit-periodic order in tiling models.

Thumbnail
View / Download
4.8 Mb
Date
2014-07
Authors
Marcoux, Catherine
Byington, Travis W
Qian, Zongjin
Charbonneau, Patrick
Socolar, Joshua ES
Repository Usage Stats
205
views
229
downloads
Abstract
A two-dimensional (2D) lattice model defined on a triangular lattice with nearest- and next-nearest-neighbor interactions based on the Taylor-Socolar monotile is known to have a limit-periodic ground state. The system reaches that state during a slow quench through an infinite sequence of phase transitions. We study the model as a function of the strength of the next-nearest-neighbor interactions and introduce closely related 3D models with only nearest-neighbor interactions that exhibit limit-periodic phases. For models with no next-nearest-neighbor interactions of the Taylor-Socolar type, there is a large degenerate class of ground states, including crystalline patterns and limit-periodic ones, but a slow quench still yields the limit-periodic state. For the Taylor-Socolar lattic model, we present calculations of the diffraction pattern for a particular decoration of the tile that permits exact expressions for the amplitudes and identify domain walls that slow the relaxation times in the ordered phases. For one of the 3D models, we show that the phase transitions are first order, with equilibrium structures that can be more complex than in the 2D case, and we include a proof of aperiodicity for a geometrically simple tile with only nearest-neighbor matching rules.
Type
Journal article
Subject
Kinetics
Models, Molecular
Molecular Conformation
Monte Carlo Method
Phase Transition
Thermodynamics
Permalink
https://hdl.handle.net/10161/12616
Published Version (Please cite this version)
10.1103/PhysRevE.90.012136
Publication Info
Marcoux, Catherine; Byington, Travis W; Qian, Zongjin; Charbonneau, Patrick; & Socolar, Joshua ES (2014). Emergence of limit-periodic order in tiling models. Phys Rev E Stat Nonlin Soft Matter Phys, 90(1). pp. 012136. 10.1103/PhysRevE.90.012136. Retrieved from https://hdl.handle.net/10161/12616.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Charbonneau

Patrick Charbonneau

Professor of Chemistry
Professor Charbonneau studies soft matter. His work combines theory and simulation to understand the glass problem, protein crystallization, microphase formation, and colloidal assembly in external fields.
Socolar

Joshua Socolar

Professor of Physics
Prof. Socolar is interested in collective behavior in condensed matter and dynamical systems. His current research interests include: Limit-periodic structures, quasicrystals, packing problems, and tiling theory; Self-assembly and phases of designed colloidal particles; Shear jamming and stick-slip behavior in dry granular materials; Organization and dynamics of complex networks; Topological elasticity of mechanical lattices.
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University