Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Phase transformations in binary colloidal monolayers.

Thumbnail
View / Download
2.3 Mb
Date
2015-03-28
Authors
Yang, Ye
Fu, Lin
Marcoux, Catherine
Socolar, Joshua ES
Charbonneau, Patrick
Yellen, Benjamin B
Repository Usage Stats
179
views
185
downloads
Abstract
Phase transformations can be difficult to characterize at the microscopic level due to the inability to directly observe individual atomic motions. Model colloidal systems, by contrast, permit the direct observation of individual particle dynamics and of collective rearrangements, which allows for real-space characterization of phase transitions. Here, we study a quasi-two-dimensional, binary colloidal alloy that exhibits liquid-solid and solid-solid phase transitions, focusing on the kinetics of a diffusionless transformation between two crystal phases. Experiments are conducted on a monolayer of magnetic and nonmagnetic spheres suspended in a thin layer of ferrofluid and exposed to a tunable magnetic field. A theoretical model of hard spheres with point dipoles at their centers is used to guide the choice of experimental parameters and characterize the underlying materials physics. When the applied field is normal to the fluid layer, a checkerboard crystal forms; when the angle between the field and the normal is sufficiently large, a striped crystal assembles. As the field is slowly tilted away from the normal, we find that the transformation pathway between the two phases depends strongly on crystal orientation, field strength, and degree of confinement of the monolayer. In some cases, the pathway occurs by smooth magnetostrictive shear, while in others it involves the sudden formation of martensitic plates.
Type
Journal article
Permalink
https://hdl.handle.net/10161/12618
Published Version (Please cite this version)
10.1039/c5sm00009b
Publication Info
Yang, Ye; Fu, Lin; Marcoux, Catherine; Socolar, Joshua ES; Charbonneau, Patrick; & Yellen, Benjamin B (2015). Phase transformations in binary colloidal monolayers. Soft Matter, 11(12). pp. 2404-2415. 10.1039/c5sm00009b. Retrieved from https://hdl.handle.net/10161/12618.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Charbonneau

Patrick Charbonneau

Professor of Chemistry
Professor Charbonneau studies soft matter. His work combines theory and simulation to understand the glass problem, protein crystallization, microphase formation, and colloidal assembly in external fields.
Socolar

Joshua Socolar

Professor of Physics
Prof. Socolar is interested in collective behavior in condensed matter and dynamical systems. His current research interests include: Limit-periodic structures, quasicrystals, packing problems, and tiling theory; Self-assembly and phases of designed colloidal particles; Organization and dynamics of complex networks; Topological elasticity of mechanical lattices.
Yellen

Benjamin Yellen

Associate Professor in the Department of Mechanical Engineering and Materials Science
Yellen's group is interested in developing highly parallel mechanisms for controlling the transport and assembly of ensembles of objects ranging from micron-sized colloidal particles to single cells.  As of 2013, Professor Yellen is active in two main areas of research:1) Development of single cell analysis tools using magnetic circuits. The goal of this project is to develop an automated single cell analysis platform that allows for highly flexible and highly paralle
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Support the Libraries
Duke University