Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Acute administration of unacylated ghrelin has no effect on Basal or stimulated insulin secretion in healthy humans.

Thumbnail
View / Download
1.7 Mb
Date
2014-07
Authors
Tong, Jenny
Davis, Harold W
Summer, Suzanne
Benoit, Stephen C
Haque, Ahrar
Bidlingmaier, Martin
Tschöp, Matthias H
D'Alessio, David
Show More
(8 total)
Repository Usage Stats
170
views
157
downloads
Abstract
Unacylated ghrelin (UAG) is the predominant ghrelin isoform in the circulation. Despite its inability to activate the classical ghrelin receptor, preclinical studies suggest that UAG may promote β-cell function. We hypothesized that UAG would oppose the effects of acylated ghrelin (AG) on insulin secretion and glucose tolerance. AG (1 µg/kg/h), UAG (4 µg/kg/h), combined AG+UAG, or saline were infused to 17 healthy subjects (9 men and 8 women) on four occasions in randomized order. Ghrelin was infused for 30 min to achieve steady-state levels and continued through a 3-h intravenous glucose tolerance test. The acute insulin response to glucose (AIRg), insulin sensitivity index (SI), disposition index (DI), and intravenous glucose tolerance (kg) were compared for each subject during the four infusions. AG infusion raised fasting glucose levels but had no effect on fasting plasma insulin. Compared with the saline control, AG and AG+UAG both decreased AIRg, but UAG alone had no effect. SI did not differ among the treatments. AG, but not UAG, reduced DI and kg and increased plasma growth hormone. UAG did not alter growth hormone, cortisol, glucagon, or free fatty acid levels. UAG selectively decreased glucose and fructose consumption compared with the other treatments. In contrast to previous reports, acute administration of UAG does not have independent effects on glucose tolerance or β-cell function and neither augments nor antagonizes the effects of AG.
Type
Journal article
Subject
Adolescent
Adult
Basal Metabolism
Blood Glucose
Drug Administration Schedule
Female
Ghrelin
Health
Humans
Insulin
Insulin-Secreting Cells
Male
Middle Aged
Young Adult
Permalink
https://hdl.handle.net/10161/12642
Published Version (Please cite this version)
10.2337/db13-1598
Publication Info
Tong, Jenny; Davis, Harold W; Summer, Suzanne; Benoit, Stephen C; Haque, Ahrar; Bidlingmaier, Martin; ... D'Alessio, David (2014). Acute administration of unacylated ghrelin has no effect on Basal or stimulated insulin secretion in healthy humans. Diabetes, 63(7). pp. 2309-2319. 10.2337/db13-1598. Retrieved from https://hdl.handle.net/10161/12642.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

D'Alessio

David A D'Alessio

Professor of Medicine
Tong

Jenny Tong

Associate Professor of Medicine
This author no longer has a Scholars@Duke profile, so the information shown here reflects their Duke status at the time this item was deposited.
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University