ALERT: This system is being upgraded on Tuesday December 12. It will not be available for use for several hours that day while the upgrade is in progress. Deposits to DukeSpace will be disabled on Monday December 11, so no new items are to be added to the repository while the upgrade is in progress. Everything should be back to normal by the end of day, December 12.

Show simple item record

A solution of a problem of Sophus Lie: Normal forms of two-dimensional metrics admitting two projective vector fields

dc.contributor.author Bryant, RL
dc.contributor.author Manno, G
dc.contributor.author Matveev, VS
dc.date.accessioned 2016-12-05T18:49:37Z
dc.date.issued 2008-02-01
dc.identifier.issn 0025-5831
dc.identifier.uri https://hdl.handle.net/10161/13154
dc.description.abstract We give a complete list of normal forms for the two-dimensional metrics that admit a transitive Lie pseudogroup of geodesic-preserving transformations and we show that these normal forms are mutually non-isometric. This solves a problem posed by Sophus Lie. © 2007 Springer-Verlag.
dc.publisher Springer Science and Business Media LLC
dc.relation.ispartof Mathematische Annalen
dc.relation.isversionof 10.1007/s00208-007-0158-3
dc.title A solution of a problem of Sophus Lie: Normal forms of two-dimensional metrics admitting two projective vector fields
dc.type Journal article
duke.contributor.id Bryant, RL|0110365
pubs.begin-page 437
pubs.end-page 463
pubs.issue 2
pubs.organisational-group Duke
pubs.organisational-group Mathematics
pubs.organisational-group Trinity College of Arts & Sciences
pubs.publication-status Published
pubs.volume 340
duke.contributor.orcid Bryant, RL|0000-0002-4890-2471


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record