Duke University Libraries
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
    • Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    L1 arrest, daf-16/FoxO and nonautonomous control of post-embryonic development.

    Thumbnail
    View / Download
    397.7 Kb
    Date
    2016-04
    Authors
    Kaplan, RE
    Baugh, Ryan
    Repository Usage Stats
    189
    views
    80
    downloads
    Abstract
    Post-embryonic development is governed by nutrient availability. L1 arrest, dauer formation and aging illustrate how starvation, anticipation of starvation and caloric restriction have profound influence on C. elegans development, respectively. Insulin-like signaling through the Forkhead box O transcription factor daf-16/FoxO regulates each of these processes. We recently reported that ins-4, ins-6 and daf-28 promote L1 development from the intestine and chemosensory neurons, similar to their role in dauer development. daf-16 functions cell-nonautonomously in regulation of L1 arrest, dauer development and aging. Discrepancies in daf-16 sites of action have been reported in each context, but the consensus implicates epidermis, intestine and nervous system. We suggest technical limitations of the experimental approach responsible for discrepant results. Steroid hormone signaling through daf-12/NHR is known to function downstream of daf-16 in control of dauer development, but signaling pathways mediating cell-nonautonomous effects of daf-16 in aging and L1 arrest had not been identified. We recently showed that daf-16 promotes L1 arrest by inhibiting daf-12/NHR and dbl-1/TGF-β Sma/Mab signaling, two pathways that promote L1 development in fed larvae. We will review these results on L1 arrest and speculate on why there are so many signals and signaling centers regulating post-embryonic development.
    Type
    Journal article
    Subject
    FoxO
    IGF
    L1 arrest
    L1 diapause
    aging
    daf-12
    daf-16
    dauer
    dbl-1
    insulin
    Permalink
    http://hdl.handle.net/10161/13271
    Published Version (Please cite this version)
    10.1080/21624054.2016.1175196
    Publication Info
    Kaplan, RE; & Baugh, Ryan (2016). L1 arrest, daf-16/FoxO and nonautonomous control of post-embryonic development. Worm, 5(2). pp. e1175196. 10.1080/21624054.2016.1175196. Retrieved from http://hdl.handle.net/10161/13271.
    This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
    Collections
    • Scholarly Articles
    More Info
    Show full item record

    Scholars@Duke

    Baugh

    L. Ryan Baugh

    Associate Professor of Biology
    We study nutritional control of development in the roundworm Caenorhabditis elegans. We are interested in the signaling pathways and gene regulatory mechanisms that enable the worm to reversibly arrest development and resist stress in response to starvation. We are also interested in epigenetic mechanisms that mediate transgenerational effects of starvation.

    Becky Kaplan

    Student
    Alphabetical list of authors with Scholars@Duke profiles.
    Open Access

    Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

    Rights for Collection: Scholarly Articles

     

     

    Browse

    All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

    My Account

    LoginRegister

    Statistics

    View Usage Statistics