Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multiple Approaches to Novel GSD Ia Therapies

Thumbnail
View / Download
91.5 Mb
Date
2016
Author
Landau, Dustin James
Advisor
Koeberl, Dwight D
Repository Usage Stats
170
views
44
downloads
Abstract

Glycogen storage disease type Ia is an autosomal recessive disorder caused by a mutation in the glucose-6-phosphatase (G6Pase) catalytic subunit, encoded in humans by G6PC. G6Pase dephosphorylates glucose-6-phosphate (G6P) in the liver to generate glucose that can be shuttled to the bloodstream to maintain normoglycemia. Patients with GSD Ia typically present at 6 months of age with sever hypoglycemia, which is lethal if untreated. The current treatment is a strict dietary regimen in which children must be fed every 2 hours overnight or given nasogastric tube feeding, and adults must consume uncooked cornstarch around the clock to maintain normal blood sugar levels. This treatment maintains survival but fails to prevent other symptoms related to metabolism of the excess G6P, and patients develop hepatic adenomas that may become hepatocellular carcinoma later in life, in addition to progressive renal complications.

To overcome the problems persisting during dietary therapy, the Koeberl lab has sought to develop gene therapy approaches that use adeno-associated virus (AAV) vectors to replace the G6pase activity, restoring normoglycemia and normal metabolic processes. However, the vast majority of AAV-delivered genetic material exists as episomes that do not replicate as cells divide, so the effects of AAV gene therapy on GSD Ia mouse and dog models have proven temporary. We hypothesized that driving integration of therapeutic vector genomes into an affected individual's genome would improve beneficial effects' longevity.

We tested several approaches to accomplish this, and have found positive effects using a zinc finger nuclease (ZFN) that targets the mouse safe harbor ROSA26 locus to induce homologous recombination of the G6PC donor vector into the mouse genome. We were able to see an improvement in mouse survival to 8 months of age, an increase in G6Pase activity at 3 months of age, and a decrease in glycogen accumulation at 3 months of age, when the ZFN vector is administered alongside the G6PC vector, compared with mice that received the G6PC vector alone.

We have also taken an alternative approach to overcoming the long-term complications of the current dietary treatment, which would augment rather than replace the current treatment. We have examined several drugs known to induce autophagy in other disease models or cell culture systems, to determine if we could manipulate autophagic activity in G6PC knockdown hepatocytes or GSD Ia mice. We have found positive results using rapamycin, a well-studied MTOR inhibitor, in mice and cells, and have screened several other drugs as well, finding positive effects for bezafibrate, mifepristone, carbamazepin, and lithium chloride, in terms of lipid reduction (which accumulates as a symptom of GSD Ia) and/or LC3-II enhancement, which is reduced in GSD Ia due to downregulation of autophagy during G6P accumulation.

Type
Dissertation
Department
Molecular Genetics and Microbiology
Subject
Molecular biology
Genetics
Health sciences
AAV
Autophagy
Drug
Genome Editing
GSD Ia
ZFN
Permalink
https://hdl.handle.net/10161/13358
Citation
Landau, Dustin James (2016). Multiple Approaches to Novel GSD Ia Therapies. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/13358.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University