Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Characterization of Host Factors and Anti-viral Compounds for Diverse Mosquito-borne Flaviviruses

Thumbnail
View / Download
3.0 Mb
Date
2016
Author
Barrows, Nicholas J.
Advisor
Garcia-Blanco, Mariano
Repository Usage Stats
299
views
589
downloads
Abstract

Our ability to convert basic knowledge into robust anti-viral therapeutics requires discovery of novel host-virus interactions as well as an informed anti-viral discovery pipeline. We used a genome-scale RNAi-based screen followed by a chemical screen of FDA-approved therapeutics to identify scores of novel dengue virus (DENV) human host dependency factors (HDF) and identified more than 20 potential anti-Zika virus (ZIKV) therapeutics.

Two genes in particular, TTC35 and TMEM111, strongly inhibited DENV infection and, based on comparisons with published literature, implicated a larger protein, the ER Membrane Protein Complex (EMC), as a pan-flavivirus HDF. The EMC is a poorly characterized multiprotein complex that may function in ER-associated protein biogenesis and/or lipid metabolism. Based on our screen data, we hypothesized that the EMC is an uncharacterized HDF that functions through a common mechanism to promote replication of flaviviruses. We report that DENV, ZIKV, and yellow fever virus (YFV) infections were impressively inhibited, while West Nile Virus (WNV) infection was unchanged, in cell lines engineered to lack EMC subunit 4 (EMC4). Furthermore, targeted depletion of EMC subunits in live mosquitos significantly reduced DENV-2 propagation in vivo. In addition, the accumulation of DENV proteins shortly after infection in EMC4 knockout cells was significantly reduced, suggesting that the EMC promotes viral protein biogenesis.

We interrogated a library of FDA-approved drugs for their ability to block infection of human HuH-7 cells by a newly isolated ZIKV strain. Selected compounds were further validated for inhibition of ZIKV infection in human cervical, placental, and neural stem cell lines, as well as primary human amnion cells. Established anti-flaviviral drugs (e.g., bortezomib and mycophenolic acid) and others that had no previously known antiviral activity (e.g., daptomycin) were identified as inhibitors of ZIKV infection. Several drugs reduced ZIKV infection across multiple cell types.

We propose that the EMC may be exploited as a novel therapeutic target for multiple flaviviruses in the future. Also we identified drugs that could be tested in clinical studies of ZIKV infection and provides a resource of small molecules to study ZIKV pathogenesis.

Type
Dissertation
Department
Molecular Genetics and Microbiology
Subject
Virology
Dengue
Yellow fever
Zika
Permalink
https://hdl.handle.net/10161/13430
Citation
Barrows, Nicholas J. (2016). Characterization of Host Factors and Anti-viral Compounds for Diverse Mosquito-borne Flaviviruses. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/13430.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University