Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Inter-Parietal White Matter Development Predicts Numerical Performance in Young Children.

Thumbnail
View / Download
2.3 Mb
Date
2011-12
Authors
Cantlon, Jessica F
Davis, Simon W
Libertus, Melissa E
Kahane, Jill
Brannon, Elizabeth M
Pelphrey, Kevin A
Repository Usage Stats
140
views
169
downloads
Abstract
In an effort to understand the role of interhemispheric transfer in numerical development, we investigated the relationship between children's developing knowledge of numbers and the integrity of their white matter connections between the cerebral hemispheres (the corpus callosum). We used diffusion tensor imaging (DTI) tractography analyses to test the link between the development of the corpus callosum and performance on symbolic and non-symbolic numerical judgment tasks. We were especially interested in the interhemispheric connections of parietal cortex in 6-year-old children, because regions of parietal cortex have been implicated in the development of numerical skills by several prior studies. Our results revealed significant structural differences between children and adults in the fibers of the corpus callosum connecting the left and right parietal lobes. Importantly, these structural differences were predictive of individual differences among children in performance on numerical judgment tasks: children with poor numerical performance relative to their peers exhibited reduced white matter coherence in the fibers passing through the isthmus of the corpus callosum, which connects the parietal hemispheres.
Type
Journal article
Permalink
https://hdl.handle.net/10161/13479
Published Version (Please cite this version)
10.1016/j.lindif.2011.09.003
Publication Info
Cantlon, Jessica F; Davis, Simon W; Libertus, Melissa E; Kahane, Jill; Brannon, Elizabeth M; & Pelphrey, Kevin A (2011). Inter-Parietal White Matter Development Predicts Numerical Performance in Young Children. Learn Individ Differ, 21(6). pp. 672-680. 10.1016/j.lindif.2011.09.003. Retrieved from https://hdl.handle.net/10161/13479.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Elizabeth M. Brannon

Professor in the Department of Psychology and Neuroscience
Dr. Brannon's research program examines the evolution and development of quantitative cognition. She studies how number, time, and spatial extent are represented by adult humans, infants, young children and nonhuman animals without language. With her many collaborators at Duke she applies behavioral techniques, event-related potentials, functional magnetic resonance imaging, and single-unit physiology to explore the cognitive and neural underpinnings of numerical cognition in nonhuman primates
This author no longer has a Scholars@Duke profile, so the information shown here reflects their Duke status at the time this item was deposited.
Davis

Simon Wilton Davis

Assistant Professor in Neurology
My research centers around the use of structural and functional imaging measures to study the shifts in network architecture in the aging brain. I am specifically interested in changes in how changes in structural and functional connectivity associated with aging impact the semantic retrieval of word or fact knowledge. Currently this involves asking why older adults have particular difficulty in certain kinds of semantic retrieval, despite the fact that vocabularies and knowledge stores typic
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University