Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Rapid brain responses independently predict gain maximization and loss minimization during economic decision making.

Thumbnail
View / Download
1.4 Mb
Date
2013-04-17
Authors
San Martín, René
Appelbaum, Lawrence G
Pearson, John M
Huettel, Scott A
Woldorff, Marty G
Repository Usage Stats
164
views
100
downloads
Abstract
Success in many decision-making scenarios depends on the ability to maximize gains and minimize losses. Even if an agent knows which cues lead to gains and which lead to losses, that agent could still make choices yielding suboptimal rewards. Here, by analyzing event-related potentials (ERPs) recorded in humans during a probabilistic gambling task, we show that individuals' behavioral tendencies to maximize gains and to minimize losses are associated with their ERP responses to the receipt of those gains and losses, respectively. We focused our analyses on ERP signals that predict behavioral adjustment: the frontocentral feedback-related negativity (FRN) and two P300 (P3) subcomponents, the frontocentral P3a and the parietal P3b. We found that, across participants, gain maximization was predicted by differences in amplitude of the P3b for suboptimal versus optimal gains (i.e., P3b amplitude difference between the least good and the best gains). Conversely, loss minimization was predicted by differences in the P3b amplitude to suboptimal versus optimal losses (i.e., difference between the worst and the least bad losses). Finally, we observed that the P3a and P3b, but not the FRN, predicted behavioral adjustment on subsequent trials, suggesting a specific adaptive mechanism by which prior experience may alter ensuing behavior. These findings indicate that individual differences in gain maximization and loss minimization are linked to individual differences in rapid neural responses to monetary outcomes.
Type
Journal article
Subject
Adolescent
Adult
Brain
Cues
Decision Making
Evoked Potentials
Feedback, Psychological
Female
Gambling
Games, Experimental
Humans
Male
Predictive Value of Tests
Probability
Reward
Statistics as Topic
Young Adult
Permalink
https://hdl.handle.net/10161/13524
Published Version (Please cite this version)
10.1523/JNEUROSCI.4242-12.2013
Publication Info
San Martín, René; Appelbaum, Lawrence G; Pearson, John M; Huettel, Scott A; & Woldorff, Marty G (2013). Rapid brain responses independently predict gain maximization and loss minimization during economic decision making. J Neurosci, 33(16). pp. 7011-7019. 10.1523/JNEUROSCI.4242-12.2013. Retrieved from https://hdl.handle.net/10161/13524.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Appelbaum

Lawrence Gregory Appelbaum

Adjunct Associate Professor in the Department of Psychiatry and Behavioral Sciences
Greg Appelbaum is an Adjunct Associate Professor in the Department of Psychiatry and Behavioral Sciences in the Duke University School of Medicine.  Dr. Appelbaum's research interests primarily concern the brain mechanisms underlying visual cognition, how these capabilities differ among individuals, and how they can be improved through behavioral, neurofeedback, and neuromodulation interventions. Within the field of cognitive neuroscience, his research has addressed visual pe
Huettel

Scott Huettel

Professor in the Department of Psychology and Neuroscience
Research in my laboratory investigates the brain mechanisms underlying economic and social decision making; collectively, this research falls into the field of “decision neuroscience” or "neuroeconomics". My laboratory uses fMRI to probe brain function, behavioral assays to characterize individual differences, and other physiological methods (e.g., eye tracking, pharmacological manipulation, genetics) to link brain and behavior. Concurrent with research on basic processes, my labo
Pearson

John Pearson

Assistant Professor of Neurobiology
My research focuses on the application of machine learning methods to the analysis of brain data and behavior. I have a special interest in the neurobiology of reward and decision-making, particularly issues surrounding foraging, impulsivity, and self-control. More generally, I am interested in computational principles underlying brain organization at the mesoscale, and work in my lab studies phenomena that range from complex social behaviors to coding principles of the retina.
Woldorff

Marty G. Woldorff

Professor in Psychiatry and Behavioral Sciences
Dr. Woldorff's main research interest is in the cognitive neuroscience of attention. At each and every moment of our lives, we are bombarded by a welter of sensory information coming at us from a myriad of directions and through our various sensory modalities -- much more than we can fully process. We must continuously select and extract the most important information from this welter of sensory inputs. How the human brain accomplishes this is one of the core challenges of modern cognitive neuro
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University