Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Wireless, Web-Based Interactive Control of Optical Coherence Tomography with Mobile Devices.

Thumbnail
View / Download
19.6 Mb
Date
2017-01
Authors
Mehta, Rajvi
Nankivil, Derek
Zielinski, David J
Waterman, Gar
Keller, Brenton
Limkakeng, Alexander T
Kopper, Regis
Izatt, Joseph A
Kuo, Anthony N
Show More
(9 total)
Repository Usage Stats
181
views
153
downloads
Abstract
PURPOSE: Optical coherence tomography (OCT) is widely used in ophthalmology clinics and has potential for more general medical settings and remote diagnostics. In anticipation of remote applications, we developed wireless interactive control of an OCT system using mobile devices. METHODS: A web-based user interface (WebUI) was developed to interact with a handheld OCT system. The WebUI consisted of key OCT displays and controls ported to a webpage using HTML and JavaScript. Client-server relationships were created between the WebUI and the OCT system computer. The WebUI was accessed on a cellular phone mounted to the handheld OCT probe to wirelessly control the OCT system. Twenty subjects were imaged using the WebUI to assess the system. System latency was measured using different connection types (wireless 802.11n only, wireless to remote virtual private network [VPN], and cellular). RESULTS: Using a cellular phone, the WebUI was successfully used to capture posterior eye OCT images in all subjects. Simultaneous interactivity by a remote user on a laptop was also demonstrated. On average, use of the WebUI added only 58, 95, and 170 ms to the system latency using wireless only, wireless to VPN, and cellular connections, respectively. Qualitatively, operator usage was not affected. CONCLUSIONS: Using a WebUI, we demonstrated wireless and remote control of an OCT system with mobile devices. TRANSLATIONAL RELEVANCE: The web and open source software tools used in this project make it possible for any mobile device to potentially control an OCT system through a WebUI. This platform can be a basis for remote, teleophthalmology applications using OCT.
Type
Journal article
Subject
optical coherence tomography
remote diagnostics
telemedicine
Permalink
https://hdl.handle.net/10161/13629
Published Version (Please cite this version)
10.1167/tvst.6.1.5
Publication Info
Mehta, Rajvi; Nankivil, Derek; Zielinski, David J; Waterman, Gar; Keller, Brenton; Limkakeng, Alexander T; ... Kuo, Anthony N (2017). Wireless, Web-Based Interactive Control of Optical Coherence Tomography with Mobile Devices. Transl Vis Sci Technol, 6(1). pp. 5. 10.1167/tvst.6.1.5. Retrieved from https://hdl.handle.net/10161/13629.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Izatt

Joseph A. Izatt

Michael J. Fitzpatrick Distinguished Professor of Engineering in the Edmund T. Pratt, Jr. School of Engineering
My research centers on the development and application of cutting-edge optical technologies for non-invasive, high-resolution imaging and sensing in living biological tissues. Our laboratory is recognized for foundational contributions to optical coherence-based approaches for in vivo sub-surface microscopic tissue imaging, particularly optical coherence tomography (OCT) which has become a standard of care in ophthalmology and other clinical specialties. The technologies we employ includ
Keller

Brenton Keller

Affiliate
Kopper

Regis Kopper

Adjunct Assistant Professor in the Department of Mechanical Engineering and Materials Science
Dr. Regis Kopper is an Adjunct Assistant Research Professor of Mechanical Engineering and Materials Science at Duke’s Pratt School of Engineering and the director of the Duke immersive Virtual Environment (DiVE). Dr. Kopper has experience in the design and evaluation of virtual reality systems in the areas of interaction design and modeling, virtual human interaction and in the evaluation of the benefits of immersive systems. At Duke, Dr. Kopper investigates how immersive virtual reality t
Kuo

Anthony Nanlin Kuo

Associate Professor of Ophthalmology
Limkakeng

Alexander Tan Limkakeng Jr.

Professor of Surgery
My personal research interest is finding new ways to diagnose acute coronary syndrome. In particular, I am interested in novel biomarkers and precision medicine approaches to this problem. I also have an interest in sepsis and empirical bioethics. As Vice Chief of Research for the Duke Division of Emergency Medicine, I also work with researchers from many fields spanning global health, innovation, clinical trials, basic discovery, and translational research. The
Zielinski

David Zielinski

Analyst, IT
David J. Zielinski is currently a technology specialist for the Duke University OIT Co-Lab (2021-present). Previously the Department of Art, Art History & Visual Studies (2018-2020) and the DiVE Virtual Reality Lab (video) (2004-2018), under the direction of Regis Kopper (2013-2018), Ryan P. McMahan (2012), and Rachael Brady (2004-2012). He received his bachelors (2002) and masters (2004) degrees in Computer Science from the
More Authors
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University