Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multipole representation of the Fermi operator with application to the electronic structure analysis of metallic systems

Thumbnail
View / Download
177.8 Kb
Date
2009-03-03
Authors
Lin, L
Lu, J
Car, R
Weinan, E
Repository Usage Stats
111
views
82
downloads
Abstract
We propose a multipole representation of the Fermi-Dirac function and the Fermi operator and use this representation to develop algorithms for electronic structure analysis of metallic systems. The algorithm is quite simple and efficient. Its computational cost scales logarithmically with βΔ where β is the inverse temperature and Δ is the width of the spectrum of the discretized Hamiltonian matrix. © 2009 The American Physical Society.
Type
Journal article
Permalink
https://hdl.handle.net/10161/14063
Published Version (Please cite this version)
10.1103/PhysRevB.79.115133
Publication Info
Lin, L; Lu, J; Car, R; & Weinan, E (2009). Multipole representation of the Fermi operator with application to the electronic structure analysis of metallic systems. Physical Review B - Condensed Matter and Materials Physics, 79(11). 10.1103/PhysRevB.79.115133. Retrieved from https://hdl.handle.net/10161/14063.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Lu

Jianfeng Lu

Professor of Mathematics
Jianfeng Lu is an applied mathematician interested in mathematical analysis and algorithm development for problems from computational physics, theoretical chemistry, materials science and other related fields.More specifically, his current research focuses include:Electronic structure and many body problems; quantum molecular dynamics; multiscale modeling and analysis; rare events and sampling techniques.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University