Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Gauge-invariant frozen Gaussian approximation method for the schrödinger equation with periodic potentials

Thumbnail
View / Download
1.0 Mb
Date
2016-01-01
Authors
Delgadillo, R
Lu, J
Yang, X
Repository Usage Stats
143
views
119
downloads
Abstract
© 2016 Society for Industrial and Applied Mathematics.We develop a gauge-invariant frozen Gaussian approximation (GIFGA) method for the Schrödinger equation (LSE) with periodic potentials in the semiclassical regime. The method generalizes the Herman-Kluk propagator for LSE to the case with periodic media. It provides an efficient computational tool based on asymptotic analysis on phase space and Bloch waves to capture the high-frequency oscillations of the solution. Compared to geometric optics and Gaussian beam methods, GIFGA works in both scenarios of caustics and beam spreading. Moreover, it is invariant with respect to the gauge choice of the Bloch eigenfunctions and thus avoids the numerical difficulty of computing gauge-dependent Berry phase. We numerically test the method by several one-dimensional examples; in particular, the first order convergence is validated, which agrees with our companion analysis paper [Frozen Gaussian Approximation for High Frequency Wave Propagation in Periodic Media, arXiv:1504.08051, 2015].
Type
Journal article
Permalink
https://hdl.handle.net/10161/14111
Published Version (Please cite this version)
10.1137/15M1040384
Publication Info
Delgadillo, R; Lu, J; & Yang, X (2016). Gauge-invariant frozen Gaussian approximation method for the schrödinger equation with periodic potentials. SIAM Journal on Scientific Computing, 38(4). pp. A2440-A2463. 10.1137/15M1040384. Retrieved from https://hdl.handle.net/10161/14111.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Lu

Jianfeng Lu

Professor of Mathematics
Jianfeng Lu is an applied mathematician interested in mathematical analysis and algorithm development for problems from computational physics, theoretical chemistry, materials science and other related fields.More specifically, his current research focuses include:Electronic structure and many body problems; quantum molecular dynamics; multiscale modeling and analysis; rare events and sampling techniques.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University