Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Thermalization of oscillator chains with onsite anharmonicity and comparison with kinetic theory.

Thumbnail
View / Download
1.2 Mb
Date
2016-12
Authors
Mendl, Christian B
Lu, Jianfeng
Lukkarinen, Jani
Repository Usage Stats
143
views
114
downloads
Abstract
We perform microscopic molecular dynamics simulations of particle chains with an onsite anharmonicity to study relaxation of spatially homogeneous states to equilibrium, and directly compare the simulations with the corresponding Boltzmann-Peierls kinetic theory. The Wigner function serves as a common interface between the microscopic and kinetic level. We demonstrate quantitative agreement after an initial transient time interval. In particular, besides energy conservation, we observe the additional quasiconservation of the phonon density, defined via an ensemble average of the related microscopic field variables and exactly conserved by the kinetic equations. On superkinetic time scales, density quasiconservation is lost while energy remains conserved, and we find evidence for eventual relaxation of the density to its canonical ensemble value. However, the precise mechanism remains unknown and is not captured by the Boltzmann-Peierls equations.
Type
Journal article
Permalink
https://hdl.handle.net/10161/14113
Published Version (Please cite this version)
10.1103/PhysRevE.94.062104
Publication Info
Mendl, Christian B; Lu, Jianfeng; & Lukkarinen, Jani (2016). Thermalization of oscillator chains with onsite anharmonicity and comparison with kinetic theory. Phys Rev E, 94(6-1). pp. 062104. 10.1103/PhysRevE.94.062104. Retrieved from https://hdl.handle.net/10161/14113.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Lu

Jianfeng Lu

Professor of Mathematics
Jianfeng Lu is an applied mathematician interested in mathematical analysis and algorithm development for problems from computational physics, theoretical chemistry, materials science and other related fields.More specifically, his current research focuses include:Electronic structure and many body problems; quantum molecular dynamics; multiscale modeling and analysis; rare events and sampling techniques.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University