Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Nicholas School of the Environment
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Nicholas School of the Environment
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Improved connectivity analysis using multiple low-cost paths to evaluate habitat for the endangered San Martin titi monkey (Callicebus oenanthe) in north-central Peru

Thumbnail
View / Download
8.1 Mb
Date
2017-04-28
Author
Walker, Nathan
Advisors
Urban, Dean L.
Swenson, Jennifer J.
Repository Usage Stats
508
views
2,110
downloads
Abstract
Graph theoretic evaluations of habitat connectivity often rely upon least cost path analyses to determine the connectedness of any two habitat patches, based on an underlying cost surface. I present two improvements upon these commonly used methods. First, rather than using a single least-cost path, I use multiple low-cost paths. This allows me to differentiate between habitat patches that are connected only through a single narrow corridor, and habitat patches that are connected through a wide swath of traversable lands. The ability to identify habitat patches with greater numbers of possible routes to other patches is of interest for resiliency planning and prioritization in the face of continued habitat loss and climate change. The second improvement I present is that instead of relying upon a single cost surface to evaluate connectivity, I iteratively generate landscapes with spatially varying costs. By testing a variety of alternative cost surfaces, I can better account for spatial uncertainty in my input data. As a case study to test these methods, I am evaluating habitat connectivity for the endangered San Martin titi monkey (Callicebus oenanthe) in north-central Peru.
Type
Master's project
Department
Nicholas School of the Environment and Earth Sciences
Subject
Connectivity
Graph theory
Multiple low-cost paths
Cost surfaces
San Martin titi monkey (Callicebus oenanthe)
Peru
Permalink
https://hdl.handle.net/10161/14198
Citation
Walker, Nathan (2017). Improved connectivity analysis using multiple low-cost paths to evaluate habitat for the endangered San Martin titi monkey (Callicebus oenanthe) in north-central Peru. Master's project, Duke University. Retrieved from https://hdl.handle.net/10161/14198.
Collections
  • Nicholas School of the Environment
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Nicholas School of the Environment


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University