Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Tumor necrosis factor α antagonism improves neurological recovery in murine intracerebral hemorrhage.

Thumbnail
View / Download
830.2 Kb
Date
2013-08-20
Authors
Lei, Beilei
Dawson, Hana N
Roulhac-Wilson, Briana
Wang, Haichen
Laskowitz, Daniel T
James, Michael L
Repository Usage Stats
169
views
40
downloads
Abstract
BACKGROUND: Intracerebral hemorrhage (ICH) is a devastating stroke subtype characterized by a prominent neuroinflammatory response. Antagonism of pro-inflammatory cytokines by specific antibodies represents a compelling therapeutic strategy to improve neurological outcome in patients after ICH. To test this hypothesis, the tumor necrosis factor alpha (TNF-α) antibody CNTO5048 was administered to mice after ICH induction, and histological and functional endpoints were assessed. METHODS: Using 10 to 12-week-old C57BL/6J male mice, ICH was induced by collagenase injection into the left basal ganglia. Brain TNF-α concentration, microglia activation/macrophage recruitment, hematoma volume, cerebral edema, and rotorod latency were assessed in mice treated with the TNF-α antibody, CNTO5048, or vehicle. RESULTS: After ICH induction, mice treated with CNTO5048 demonstrated reduction in microglial activation/macrophage recruitment compared to vehicle-treated animals, as assessed by unbiased stereology (P = 0.049). This reduction in F4/80-positive cells was associated with a reduction in cleaved caspase-3 (P = 0.046) and cerebral edema (P = 0.026) despite similar hematoma volumes, when compared to mice treated with vehicle control. Treatment with CNTO5048 after ICH induction was associated with a reduction in functional deficit when compared to mice treated with vehicle control, as assessed by rotorod latencies (P = 0.024). CONCLUSIONS: Post-injury treatment with the TNF-α antibody CNTO5048 results in less neuroinflammation and improved functional outcomes in a murine model of ICH.
Type
Journal article
Subject
Animals
Antibodies, Monoclonal
Cerebral Hemorrhage
Disease Models, Animal
Inflammation
Male
Mice
Mice, Inbred C57BL
Nervous System Diseases
Random Allocation
Recovery of Function
Tumor Necrosis Factor-alpha
Permalink
https://hdl.handle.net/10161/14240
Published Version (Please cite this version)
10.1186/1742-2094-10-103
Publication Info
Lei, Beilei; Dawson, Hana N; Roulhac-Wilson, Briana; Wang, Haichen; Laskowitz, Daniel T; & James, Michael L (2013). Tumor necrosis factor α antagonism improves neurological recovery in murine intracerebral hemorrhage. J Neuroinflammation, 10. pp. 103. 10.1186/1742-2094-10-103. Retrieved from https://hdl.handle.net/10161/14240.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Dawson

Hana Nenicka Dawson

Adjunct Assistant Professor in the Department of Neurology
Our laboratory studies the role of tau protein in neurodegeneration. Aggregated tau protein is a hallmark feature of a group of neurodegenerative dementias called tauopathies. This group of diseases accounts for a large majority of all dementias and includes Alzheimer's disease, Pick's disease and frontotemporal dementia to name a few. To model tauopathies, we overexpressed normal and mutated human tau protein or no tau protein in the central nervous system of transgenic mice. Several of t
James

Michael Lucas James

Associate Professor of Anesthesiology
I have an extensive background in neuroanesthesia and neurointensive care and a special research interest in translational and clinical research aspects of intracerebral hemorrhage. After completing residencies in neurology and anesthesiology with fellowships in neurocritical care, neuroanesthesia, and vascular neurology, I developed a murine model of intracerebral hemorrhage in the Multidisciplinary Neuroprotection Laboratories at Duke University. After optimization of the model, I h
Laskowitz

Daniel Todd Laskowitz

Professor of Neurology
Our laboratory uses molecular biology, cell culture, and animal modeling techniques to examine the CNS response to acute injury. In particular, our laboratory examines the role of microglial activation and the endogenous CNS inflammatory response in exacerbating secondary injury following acute brain insult. Much of the in vitro work in this laboratory is dedicated to elucidating cellular responses to injury with the ultimate goal of exploring new therapeutic interventions in the clinical settin
Wang

Haichen Wang

Assistant Professor in Neurology
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University