Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deciphering the Role of the YAP Oncoprotein in Ras-driven Rhabdomyosarcoma Tumorigenesis

Thumbnail
View / Download
4.8 Mb
Date
2017
Author
Slemmons, Katherine Kerr
Advisor
Linardic, Corinne M
Repository Usage Stats
274
views
108
downloads
Abstract

Rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in children and adolescents, is characterized by skeletal muscle features. The Ras-driven subset, which includes the embryonal (eRMS) and pleomorphic (pRMS) histologic subtypes, is an aggressive high risk subgroup with a 5-year survival rate of <30%. Recently the YAP oncoprotein, which is ordinarily silenced by the Hippo tumor suppressor pathway, was found to be highly upregulated in RMS tumors. However, the role of YAP in the Ras-driven subset was unknown.

In patient-derived Ras-driven eRMS cell lines, we suppressed YAP genetically via shRNAs. YAP suppression decreased cell proliferation, increased myogenic differentiation, and promoted apoptosis in vitro and in vivo in subcutaneous xenografts. Pharmacologic inhibition by the YAP-TEAD inhibitor verteporfin also decreased cell proliferation and tumor growth. In a genetically defined model of Ras-driven RMS, constitutively active YAPS127A can serve as the initial oncogenic alteration whereby YAPS127A is sufficient for senescence bypass in primary skeletal muscle myoblasts, but requires expression of hTERT and oncogenic Ras for tumorigenesis in vivo. Importantly these tumors are histologically consistent with human Ras-driven RMS.

To understand the impact of YAP signaling on cell stemness, we cultured eRMS cells as 3D spheres. These spheres are enriched in stem cell genes, as well as in YAP and Notch signaling. The Notch pathway is another developmental pathway that is also highly upregulated in eRMS and contributes to tumorigenesis. Using the spheres as a model, we uncovered a bidirectional signaling circuit between YAP and Notch that regulates stemness. Active Notch signaling upregulates YAP, and YAP in turn upregulates the Notch ligands JAG1 and DLL1 and the transcription factor RBPJ. This circuit controls expression of several stem cell genes including SOX2, which is functionally required for eRMS cell stemness. Silencing this circuit for therapeutic purposes may be challenging, since the inhibition of one node (for example pharmacologic Notch blockade) can be rescued by upregulation of another (constitutive YAP expression). Instead, dual inhibition of Notch and YAP is necessary. Supporting the existence of this circuit beyond a model system, nuclear Notch and YAP protein expression are correlated in human eRMS tumors, and YAP suppression in vivo decreases both Notch signaling and SOX2 expression. In preliminary studies, we also analyzed the differential effects of the three Ras isoforms on eRMS tumorigenesis, Ras-Notch, and Ras-YAP signaling, and developed a method to culture the alveolar RMS subtype as spheres. In conclusion, the YAP oncoprotein drives Ras-driven tumorigenesis by promoting cell growth, survival, and stemness, and through signaling interactions with the Notch pathway. This study also provides rationale for combination therapies targeting YAP and Notch for the treatment of Ras-driven RMS.

Type
Dissertation
Department
Molecular Cancer Biology
Subject
Oncology
Molecular biology
Cellular biology
Notch
pediatric cancer
Ras
rhabdomyosarcoma
stemness
YAP
Permalink
https://hdl.handle.net/10161/14404
Citation
Slemmons, Katherine Kerr (2017). Deciphering the Role of the YAP Oncoprotein in Ras-driven Rhabdomyosarcoma Tumorigenesis. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/14404.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University