Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Identifying water contamination from fossil fuel development using geochemical and isotopic fingerprints

Thumbnail
View / Download
46.4 Mb
Date
2017
Author
Harkness, Jennifer
Advisor
Vengosh, Avner
Repository Usage Stats
1,296
views
164
downloads
Abstract

Fossil fuels continue to be a major component of the energy economies in North America, accounting for 60% of electricity generation in the U.S. Recent incidences (i.e. spills) and limited regulation of the fossil fuel industry has generated public concern about the risks fossil fuel development pose to water resources. Previous studies have identified negative impacts on water quality associated with the storage and disposal of coal combustion residuals, oil sands process-affected water, and oil and gas wastewater, as well as leaking of methane to groundwater in areas of hydraulic fracturing. In addition, contamination of water resources from natural (geogenic) sources has also been observed in many of the areas associated with fossil fuel development. Since naturally occurring saline water is common in some regions associated with fossil fuel explorations, delineating the effects of anthropogenic contamination sources is a major challenge for evaluating the impact of fossil fuel development on water quality.

This thesis investigates the geochemical and isotopic characteristics of wastewater from coal combustion residual storage ponds, unconventional oil and gas exploration, and oil sands mining, in an attempt to evaluate the use of geochemical and isotopic tracers to identify fossil fuel-associated wastewaters in the environment. This includes the investigation of (1) halogen (Br, I) and ammonium contents of oil and gas wastewater (OGW);(2) the lithium isotope ratios in OGW and coal combustion residuals; and (3) the inorganic geochemistry and boron, strontium and lithium isotope ratios of oil sands processed-affected water (OSPW). In three case studies, these geochemical and isotopic tools were integrated into comprehensive geochemical frameworks that investigated the (1) leaking of coal ash ponds to surface and groundwater in the southeastern United Sates; (2) geochemistry of groundwater in an area of shale gas development in West Virginia through time and space; and (3) evaluation of the sources of molybdenum in contaminated groundwater in southeastern

Wisconsin and possible links to coal ash surface disposal. These investigations illustrate a range of situations in which isotopic fingerprinting provided a unique geochemical tool that can successfully identify fossil fuel-related wastewater in the environment. These studies have also demonstrated the environmental impact upon releasing of fossil fuels wastewater to the environment. The case studies support the use of geochemical and isotope tools as robust methods to not only identify contamination of water resources by fossil fuel-related activities, but also to distinguish wastewater contamination from naturally occurring contamination in areas of fossil fuel development. These studies highlight the benefit of using a suite of geochemical tools when investigating water quality impacts.

Type
Dissertation
Department
Earth and Ocean Sciences
Subject
Geochemistry
Environmental geology
Water resources management
contamination
fossil fuel
isotope geochemistry
water resources
watewater
Permalink
https://hdl.handle.net/10161/14483
Citation
Harkness, Jennifer (2017). Identifying water contamination from fossil fuel development using geochemical and isotopic fingerprints. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/14483.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University