Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bayesian Kernel Models for Statistical Genetics and Cancer Genomics

Thumbnail
View / Download
23.4 Mb
Date
2017
Author
Crawford, Lorin Anthony
Advisors
Mukherjee, Sayan
Wood, Kris C
Repository Usage Stats
367
views
531
downloads
Abstract

The main contribution of this thesis is to examine the utility of kernel regression ap- proaches and variance component models for solving complex problems in statistical genetics and molecular biology. Many of these types of statistical methods have been developed specifically to be applied to solve similar biological problems. For example, kernel regression models have a long history in statistics, applied mathematics, and machine learning. More recently, variance component models have been extensively utilized as tools to broaden understanding of the genetic basis of phenotypic varia- tion. However, because of large combinatorial search spaces and other confounding factors, many of these current methods face enormous computational challenges and often suffer from low statistical power --- particularly when phenotypic variation is driven by complicated underlying genetic architectures (e.g. the presence of epistatic effects involving higher order genetic interactions). This thesis highlights two novel methods which provide innovative solutions to better address the important statis- tical and computational hurdles faced within complex biological data sets. The first is a Bayesian non-parametric statistical framework that allows for efficient variable selection in nonlinear regression which we refer to as "Bayesian approximate kernel regression", or BAKR. The second is a novel algorithm for identifying genetic vari- ants that are involved in epistasis without the need to identify the exact partners with which the variants interact. We refer to this method as the "MArginal ePIstasis Test", or MAPIT. Here, we develop the theory of these two approaches, and demonstrate their power, interpretability, and computational efficiency for analyz- ing complex phenotypes. We also illustrate their ability to facilitate novel biological discoveries in several real data sets, each of them representing a particular class of analyses: genome-wide association studies (GWASs), molecular trait quantitative trait loci (QTL) mapping studies, and cancer biology association studies. Lastly, we will also explore the potential of these approaches in radiogenomics, a brand new subfield of genetics and genomics that focuses on the study of correlations between imaging or network features and genetic variation.

Type
Dissertation
Department
Statistical Science
Subject
Statistics
Biostatistics
Genetics
Epistasis
Radiogenomics
Reproducing kernel Hilbert space
Variance Component
Permalink
https://hdl.handle.net/10161/14539
Citation
Crawford, Lorin Anthony (2017). Bayesian Kernel Models for Statistical Genetics and Cancer Genomics. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/14539.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University