Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Phase diagram and aggregation dynamics of a monolayer of paramagnetic colloids

Thumbnail
View / Download
5.6 Mb
Date
2017-06-01
Authors
Pham, An T
Zhuang, Yuan
Detwiler, Paige
Socolar, Joshua ES
Charbonneau, Patrick
Yellen, Benjamin B
Repository Usage Stats
216
views
183
downloads
Abstract
We have developed a tunable colloidal system and a corresponding simulation model for studying the phase behavior of particles assembling under the influence of long-range magnetic interactions. A monolayer of paramagnetic particles is subjected to a spatially uniform magnetic field with a static perpendicular component and rapidly rotating in-plane component. The sign and strength of the interactions vary with the tilt angle $\theta$ of the rotating magnetic field. For a purely in-plane field, $\theta=90^{\circ}$, interactions are attractive and the experimental results agree well with both equilibrium and out-of-equilibrium predictions based on a two-body interaction model. For tilt angles $50^{\circ}\lesssim \theta\lesssim 55^{\circ}$, the two-body interaction gives a short-range attractive and long-range repulsive (SALR) interaction, which predicts the formation of equilibrium microphases. In experiments, however, a different type of assembly is observed. Inclusion of three-body (and higher-order) terms in the model does not resolve the discrepancy. We thus further characterize the anomalous behavior by measuring the time-dependent cluster size distribution.
Type
Journal article
Subject
cond-mat.soft
cond-mat.soft
Permalink
https://hdl.handle.net/10161/14621
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Charbonneau

Patrick Charbonneau

Professor of Chemistry
Professor Charbonneau studies soft matter. His work combines theory and simulation to understand the glass problem, protein crystallization, microphase formation, and colloidal assembly in external fields.
Socolar

Joshua Socolar

Professor of Physics
Prof. Socolar is interested in collective behavior in condensed matter and dynamical systems. His current research interests include: Limit-periodic structures, quasicrystals, packing problems, and tiling theory; Self-assembly and phases of designed colloidal particles; Organization and dynamics of complex networks; Topological elasticity of mechanical lattices.
Yellen

Benjamin Yellen

Associate Professor in the Department of Mechanical Engineering and Materials Science
Yellen's group is interested in developing highly parallel mechanisms for controlling the transport and assembly of ensembles of objects ranging from micron-sized colloidal particles to single cells.  As of 2013, Professor Yellen is active in two main areas of research:1) Development of single cell analysis tools using magnetic circuits. The goal of this project is to develop an automated single cell analysis platform that allows for highly flexible and highly paralle
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Support the Libraries
Duke University