Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparison of interlaboratory variation in absolute T-cell counts by single-platform and optimized dual-platform methods.

Thumbnail
View / Download
127.5 Kb
Date
2010-05
Authors
Hultin, Lance E
Chow, Marianne
Jamieson, Beth D
O'Gorman, Maurice RG
Menendez, Frederick A
Borowski, Luann
Denny, Thomas N
Margolick, Joseph B
Show More
(8 total)
Repository Usage Stats
119
views
395
downloads
Abstract
BACKGROUND: Previous studies have reported that the adoption of a single-platform flow cytometry cell counting method resulted in lower interlaboratory variation in absolute T cell counts as compared to predicate dual-platform flow cytometry methods which incorporate independent automated lymphocyte counts (Schnizlein-Bick et al., Clin Diagn Lab Immunol 2000;7:336-343; Reimann et al., Clin Diagn Lab Immunol 2000;7:344-351). In the present study, we asked whether use of a single-platform method could reduce variation in absolute cell counts across the laboratories in the Multicenter AIDS Cohort Study (MACS) (n = 4), as suggested by the studies cited. METHODS: Identical study samples were shipped overnight to the MACS laboratories either by the National Institute of Allergy and Infectious Diseases, Division of AIDS Immunology Quality Assessment (NIAID- IQA) proficiency-testing program (n = 14), or by the Los Angeles site of the MACS (n = 10). For each sample, two tubes of blood were received; one was used for an automated complete blood count and differential, and the other for flow cytometry. The latter was performed using both our current dual-platform method (three-color CD45 gating and automated hematology) and the single-platform method (with TruCOUNT beads to generate the absolute counts). RESULTS: The median percent coefficients of variation (%CVs) for the dual-platform and single-platform methods were 6.6 and 9.9, respectively, for CD4 T cell counts, and 5.9 and 8.5, respectively, for CD8 T cell counts (n = 24). These differences were not statistically significant. The differences in absolute T-cell counts between the MACS sites and the median of all laboratories participating in the NIAID-IQA were smaller for the dual-platform than for single-platform absolute count method. CONCLUSION: In contrast to previous reports, we did not observe lower interlaboratory variation across the MACS sites for single-platform absolute lymphocyte subset counting relative to dual-platform methods. This result may be at least partly explained by the lower interlaboratory variation with the optimized dual-platform method in this study relative to the previous reports.
Type
Journal article
Subject
Cohort Studies
Flow Cytometry
Humans
Laboratories
Lymphocyte Count
Reference Standards
Reproducibility of Results
Permalink
https://hdl.handle.net/10161/14742
Published Version (Please cite this version)
10.1002/cyto.b.20500
Publication Info
Hultin, Lance E; Chow, Marianne; Jamieson, Beth D; O'Gorman, Maurice RG; Menendez, Frederick A; Borowski, Luann; ... Margolick, Joseph B (2010). Comparison of interlaboratory variation in absolute T-cell counts by single-platform and optimized dual-platform methods. Cytometry B Clin Cytom, 78(3). pp. 194-200. 10.1002/cyto.b.20500. Retrieved from https://hdl.handle.net/10161/14742.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Denny

Thomas Norton Denny

Professor in Medicine
Thomas N. Denny, MSc, M.Phil, is the Chief Operating Officer of the Duke Human Vaccine Institute (DHVI), Associate Dean for Duke Research and Discovery @RTP, and a Professor of Medicine in the Department of Medicine at Duke University Medical Center. He is also an Affiliate Member of the Duke Global Health Institute. Previously, he served on the Health Sector Advisory Council of the Duke University Fuquay School of Business. Prior to joining Duke, he was an Associate Professor of Pathology, Labo
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University