Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Finding regulatory DNA motifs using alignment-free evolutionary conservation information.

Thumbnail
View / Download
2.2 Mb
Date
2010-04
Authors
Gordân, Raluca
Narlikar, Leelavati
Hartemink, Alexander J
Repository Usage Stats
138
views
98
downloads
Abstract
As an increasing number of eukaryotic genomes are being sequenced, comparative studies aimed at detecting regulatory elements in intergenic sequences are becoming more prevalent. Most comparative methods for transcription factor (TF) binding site discovery make use of global or local alignments of orthologous regulatory regions to assess whether a particular DNA site is conserved across related organisms, and thus more likely to be functional. Since binding sites are usually short, sometimes degenerate, and often independent of orientation, alignment algorithms may not align them correctly. Here, we present a novel, alignment-free approach for using conservation information for TF binding site discovery. We relax the definition of conserved sites: we consider a DNA site within a regulatory region to be conserved in an orthologous sequence if it occurs anywhere in that sequence, irrespective of orientation. We use this definition to derive informative priors over DNA sequence positions, and incorporate these priors into a Gibbs sampling algorithm for motif discovery. Our approach is simple and fast. It requires neither sequence alignments nor the phylogenetic relationships between the orthologous sequences, yet it is more effective on real biological data than methods that do.
Type
Journal article
Subject
Base Sequence
Binding Sites
Conserved Sequence
Molecular Sequence Data
Promoter Regions, Genetic
Sequence Alignment
Sequence Analysis, DNA
Transcription Factors
Permalink
https://hdl.handle.net/10161/15158
Published Version (Please cite this version)
10.1093/nar/gkp1166
Publication Info
Gordân, Raluca; Narlikar, Leelavati; & Hartemink, Alexander J (2010). Finding regulatory DNA motifs using alignment-free evolutionary conservation information. Nucleic Acids Res, 38(6). pp. e90. 10.1093/nar/gkp1166. Retrieved from https://hdl.handle.net/10161/15158.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Hartemink

Alexander J. Hartemink

Professor of Computer Science
Computational biology, machine learning, Bayesian statistics, transcriptional regulation, genomics and epigenomics, graphical models, Bayesian networks, hidden Markov models, systems biology, computational neurobiology, classification, feature selection
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Related items

Showing items related by title, author, creator, and subject.

  • Thumbnail

    A high-resolution map of human evolutionary constraint using 29 mammals. 

    Lindblad-Toh, Kerstin; Garber, Manuel; Zuk, Or; Lin, Michael F; Parker, Brian J; Washietl, Stefan; Kheradpour, Pouya; ... (89 authors) (Nature, 2011-10-12)
    The comparison of related genomes has emerged as a powerful lens for genome interpretation. Here we report the sequencing and comparative analysis of 29 eutherian genomes. We confirm that at least 5.5% of the human genome ...
  • Thumbnail

    Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. 

    Green, Richard E; Braun, Edward L; Armstrong, Joel; Earl, Dent; Nguyen, Ngan; Hickey, Glenn; Vandewege, Michael W; ... (55 authors) (Science, 2014-12-12)
    To provide context for the diversification of archosaurs--the group that includes crocodilians, dinosaurs, and birds--we generated draft genomes of three crocodilians: Alligator mississippiensis (the American alligator), ...
  • Thumbnail

    The 70-kDa heat shock cognate protein (Hsc73) gene is enhanced by ovarian hormones in the ventromedial hypothalamus. 

    Krebs, CJ; Jarvis, ED; Pfaff, DW (Proc Natl Acad Sci U S A, 1999-02-16)
    Estrogen (E) and progesterone (P) orchestrate many cellular responses involved in female reproductive physiology, including reproductive behaviors. E- and P-binding neurons important for lordosis behavior have been located ...

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University