Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Development of an In Vivo Mobile Dynamic Microscopy System that Images the Hypoxic Microenvironments of Cancerous Tumors via Fluorescent and Phosphorescent Nanoparticles

Thumbnail
View / Download
7.2 Mb
Date
2017
Author
Rickard, Ashlyn
Advisor
Palmer, Gregory
Repository Usage Stats
152
views
57
downloads
Abstract

Hypoxic tumor microenvironments have a clear correlation with a lack of radiosensitivity and diminished therapy response. This relationship can be described through the use of fluorescent and phosphorescent nanoparticles optically imaged in a mouse model. Through the use of this ratiometric oxygen sensing, the hypoxic state of the cancerous tumor can be compared. Normally, the microscope imaging system requires the mouse to be imaged under anesthesia and data recorded for a short amount of time. This has led to challenges in clearly defining the oxygen saturation levels in hemoglobin because the anesthesia can affect the tumor vascular dynamics. Moreover, it is desirable to track blood flow and oxygenation changes over a longer period of time in order to characterize the dynamics of cycling hypoxia and therapeutic response. Therefore, a mobile imaging apparatus has been designed and built to directly attach to the dorsal skinfold window chamber installed on nude murine models. Current progress includes quantifiable ratiometric oxygenation in boron nanoparticle solutions imaged under UV light with the mobile unit. The concept has also been successful in in vivo studies for anesthetized mice. The mobile unit is capable of resolving vasculature and is sensitive enough to record nanoparticle emissions originating from tissue in a mouse window chamber model. This system will use dynamic microscopy to image the tumor’s hypoxic environment on un-anesthetized mice and yield insight into tumor biology and therapeutic response.

Type
Master's thesis
Department
Medical Physics
Subject
Medical imaging
Hypoxia
Mouse Model
Nanoparticles
Oncology
Optical Imaging
Permalink
https://hdl.handle.net/10161/15270
Citation
Rickard, Ashlyn (2017). The Development of an In Vivo Mobile Dynamic Microscopy System that Images the Hypoxic Microenvironments of Cancerous Tumors via Fluorescent and Phosphorescent Nanoparticles. Master's thesis, Duke University. Retrieved from https://hdl.handle.net/10161/15270.
Collections
  • Masters Theses
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Masters Theses


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University