Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

RNA-dependent stabilization of SUV39H1 at constitutive heterochromatin.

Thumbnail
View / Download
5.4 Mb
Date
2017-08-01
Authors
Johnson, Whitney L
Yewdell, William T
Bell, Jason C
McNulty, Shannon M
Duda, Zachary
O'Neill, Rachel J
Sullivan, Beth A
Straight, Aaron F
Show More
(8 total)
Repository Usage Stats
142
views
114
downloads
Abstract
Heterochromatin formed by the SUV39 histone methyltransferases represses transcription from repetitive DNA sequences and ensures genomic stability. How SUV39 enzymes localize to their target genomic loci remains unclear. Here, we demonstrate that chromatin-associated RNA contributes to the stable association of SUV39H1 with constitutive heterochromatin in human cells. We find that RNA associated with mitotic chromosomes is concentrated at pericentric heterochromatin, and is encoded, in part, by repetitive α-satellite sequences, which are retained in cis at their transcription sites. Purified SUV39H1 directly binds nucleic acids through its chromodomain; and in cells, SUV39H1 associates with α-satellite RNA transcripts. Furthermore, nucleic acid binding mutants destabilize the association of SUV39H1 with chromatin in mitotic and interphase cells - effects that can be recapitulated by RNase treatment or RNA polymerase inhibition - and cause defects in heterochromatin function. Collectively, our findings uncover a previously unrealized function for chromatin-associated RNA in regulating constitutive heterochromatin in human cells.
Type
Conference
Subject
SUV39H1
cell biology
chromatin
chromosomes
genes
heterochromatin
histone methylation
human
noncoding RNA
Permalink
https://hdl.handle.net/10161/15324
Published Version (Please cite this version)
10.7554/eLife.25299
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Sullivan

Beth Ann Sullivan

Professor of Molecular Genetics and Microbiology
Research in the Sullivan Lab is focused on chromosome organization, with a specific emphasis on the genomics and epigenetics of the chromosomal locus called the centromere and the formation and fate of chromosome abnormalities that are associated with birth defects, reproductive abnormalities, and cancer. The centromere is a specialized chromosomal site involved in chromosome architecture and movement, kinetochore function, heterochromatin assembly, and sister chromatid cohesion.Our
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Support the Libraries
Duke University