Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multichannel electrophysiological spike sorting via joint dictionary learning and mixture modeling

Thumbnail
View / Download
4.8 Mb
Date
2014-01-01
Authors
Carlson, David E
Vogelstein, Joshua T
Wu, Qisong
Lian, Wenzhao
Zhou, Mingyuan
Stoetzner, Colin R
Kipke, Daryl
Weber, Douglas
Dunson, David B
Carin, Lawrence
Show More
(10 total)
Repository Usage Stats
888
views
420
downloads
Abstract
We propose a methodology for joint feature learning and clustering of multichannel extracellular electrophysiological data, across multiple recording periods for action potential detection and classification (sorting). Our methodology improves over the previous state of the art principally in four ways. First, via sharing information across channels, we can better distinguish between single-unit spikes and artifacts. Second, our proposed "focused mixture model" (FMM) deals with units appearing, disappearing, or reappearing over multiple recording days, an important consideration for any chronic experiment. Third, by jointly learning features and clusters, we improve performance over previous attempts that proceeded via a two-stage learning process. Fourth, by directly modeling spike rate, we improve the detection of sparsely firing neurons. Moreover, our Bayesian methodology seamlessly handles missing data. We present the state-of-the-art performance without requiring manually tuning hyperparameters, considering both a public dataset with partial ground truth and a new experimental dataset. © 2013 IEEE.
Type
Journal article
Permalink
https://hdl.handle.net/10161/15596
Published Version (Please cite this version)
10.1109/TBME.2013.2275751
Publication Info
Carlson, David E; Vogelstein, Joshua T; Wu, Qisong; Lian, Wenzhao; Zhou, Mingyuan; Stoetzner, Colin R; ... Carin, Lawrence (2014). Multichannel electrophysiological spike sorting via joint dictionary learning and mixture modeling. IEEE Transactions on Biomedical Engineering, 61(1). pp. 41-54. 10.1109/TBME.2013.2275751. Retrieved from https://hdl.handle.net/10161/15596.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Carin

Lawrence Carin

Professor of Electrical and Computer Engineering
Lawrence Carin earned the BS, MS, and PhD degrees in electrical engineering at the University of Maryland, College Park, in 1985, 1986, and 1989, respectively. In 1989 he joined the Electrical Engineering Department at Polytechnic University (Brooklyn) as an Assistant Professor, and became an Associate Professor there in 1994. In September 1995 he joined the Electrical and Computer Engineering (ECE) Department at Duke University, where he is now a Professor. He was ECE Department Chair from 2011
Carlson

David Carlson

Assistant Professor of Civil and Environmental Engineering
Dunson

David B. Dunson

Arts and Sciences Distinguished Professor of Statistical Science
My research focuses on developing new tools for probabilistic learning from complex data - methods development is directly motivated by challenging applications in ecology/biodiversity, neuroscience, environmental health, criminal justice/fairness, and more.  We seek to develop new modeling frameworks, algorithms and corresponding code that can be used routinely by scientists and decision makers.  We are also interested in new inference framework and in studying theoretical properties
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University