Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On Finsler surfaces of constant flag curvature with a Killing field

Thumbnail
View / Download
166.7 Kb
Date
2017-06-01
Authors
Bryant, RL
Huang, L
Mo, X
Repository Usage Stats
194
views
178
downloads
Abstract
© 2017 Elsevier B.V. We study two-dimensional Finsler metrics of constant flag curvature and show that such Finsler metrics that admit a Killing field can be written in a normal form that depends on two arbitrary functions of one variable. Furthermore, we find an approach to calculate these functions for spherically symmetric Finsler surfaces of constant flag curvature. In particular, we obtain the normal form of the Funk metric on the unit disk D 2 .
Type
Journal article
Permalink
https://hdl.handle.net/10161/15692
Published Version (Please cite this version)
10.1016/j.geomphys.2017.02.012
Publication Info
Bryant, RL; Huang, L; & Mo, X (2017). On Finsler surfaces of constant flag curvature with a Killing field. Journal of Geometry and Physics, 116. pp. 345-357. 10.1016/j.geomphys.2017.02.012. Retrieved from https://hdl.handle.net/10161/15692.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Bryant

Robert Bryant

Phillip Griffiths Professor of Mathematics
My research concerns problems in the geometric theory of partial differential equations.  More specifically, I work on conservation laws for PDE, Finsler geometry, projective geometry, and Riemannian geometry, including calibrations and the theory of holonomy. Much of my work involves or develops techniques for studying systems of partial differential equations that arise in geometric problems.  Because of their built-in invariance properties, these systems often have specia
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University