Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Measurement and Modeling of Radiation and Water Fluxes in Plantation Forests

Thumbnail
View / Download
5.0 Mb
Date
2009
Author
Kim, Hyun-Seok
Advisor
Oren, Ram
Repository Usage Stats
301
views
388
downloads
Abstract

An increasing number of experimental studies attempt to maximize biomass production of trees in plantations by removing nutrient and water limitations. The results from these studies begin to inform operational managers. We investigated a Populus trichocarpa Torr. x P. deltoides Bartr. & Marsh plantation with a combined irrigation and nutrient supply system designed to optimize biomass production. Sap flux density was measured continuously over four of the six growing season months, supplemented with periodic measurements of leaf gas exchange and water potential. Measurements of tree diameter and height were used to estimate leaf area and biomass production using allometric relations. Sap flux was converted to canopy conductance, and analyzed based on an empirical model to isolate the effects of water limitation. Actual and soil water-unlimited potential CO2 uptakes were estimated using a Canopy Conductance Constrained Carbon Assimilation (4C-A) scheme, which couples actual or potential canopy conductance with vertical gradients of light distribution, leaf-level conductance, maximum Rubisco capacity (Vcmax) and maximum electron transport (Jmax). Net primary production (NPP) was ~0.43 of gross primary production (GPP); when estimated for individual trees, this ratio was independent of tree size. Based on the same ratio, we found that current irrigation reduced growth by ~18 % compare to growth with no water limitation. To achieve this maximum growth, however, would require 70% more water for transpiration, and would reduce water use efficiency by 27 %, from 1.57 to 1.15 g stem wood C kg-1 water. Given the economic and social values of water, plantation managers appear to have optimized water use.

Type
Dissertation
Department
Environment
Subject
Environmental Sciences
Agriculture, Forestry and Wildlife
Biology, Ecology
carbon
forest
model
radiation
water
Permalink
https://hdl.handle.net/10161/1571
Citation
Kim, Hyun-Seok (2009). Measurement and Modeling of Radiation and Water Fluxes in Plantation Forests. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/1571.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University