Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario.

Thumbnail
View / Download
877.9 Kb
Date
2013
Authors
Colman, Benjamin P
Arnaout, Christina L
Anciaux, Sarah
Gunsch, Claudia K
Hochella, Michael F
Kim, Bojeong
Lowry, Gregory V
McGill, Bonnie M
Reinsch, Brian C
Richardson, Curtis J
Unrine, Jason M
Wright, Justin P
Yin, Liyan
Bernhardt, Emily S
Show More
(14 total)
Repository Usage Stats
441
views
72
downloads
Abstract
A large fraction of engineered nanomaterials in consumer and commercial products will reach natural ecosystems. To date, research on the biological impacts of environmental nanomaterial exposures has largely focused on high-concentration exposures in mechanistic lab studies with single strains of model organisms. These results are difficult to extrapolate to ecosystems, where exposures will likely be at low-concentrations and which are inhabited by a diversity of organisms. Here we show adverse responses of plants and microorganisms in a replicated long-term terrestrial mesocosm field experiment following a single low dose of silver nanoparticles (0.14 mg Ag kg(-1) soil) applied via a likely route of exposure, sewage biosolid application. While total aboveground plant biomass did not differ between treatments receiving biosolids, one plant species, Microstegium vimeneum, had 32 % less biomass in the Slurry+AgNP treatment relative to the Slurry only treatment. Microorganisms were also affected by AgNP treatment, which gave a significantly different community composition of bacteria in the Slurry+AgNPs as opposed to the Slurry treatment one day after addition as analyzed by T-RFLP analysis of 16S-rRNA genes. After eight days, N2O flux was 4.5 fold higher in the Slurry+AgNPs treatment than the Slurry treatment. After fifty days, community composition and N2O flux of the Slurry+AgNPs treatment converged with the Slurry. However, the soil microbial extracellular enzymes leucine amino peptidase and phosphatase had 52 and 27% lower activities, respectively, while microbial biomass was 35% lower than the Slurry. We also show that the magnitude of these responses was in all cases as large as or larger than the positive control, AgNO3, added at 4-fold the Ag concentration of the silver nanoparticles.
Type
Journal article
Subject
Biomass
Ecosystem
Metal Nanoparticles
Microscopy, Electron, Transmission
Plants
Silver
Silver Nitrate
Permalink
https://hdl.handle.net/10161/15714
Published Version (Please cite this version)
10.1371/journal.pone.0057189
Publication Info
Colman, Benjamin P; Arnaout, Christina L; Anciaux, Sarah; Gunsch, Claudia K; Hochella, Michael F; Kim, Bojeong; ... Bernhardt, Emily S (2013). Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario. PLoS One, 8(2). pp. e57189. 10.1371/journal.pone.0057189. Retrieved from https://hdl.handle.net/10161/15714.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Bernhardt

Emily S. Bernhardt

James B. Duke Distinguished Professor
Emily Bernhardt is an ecosystem ecologist and biogeochemist whose research is principally concerned with tracking the movement of elements through ecological systems. Dr. Bernhardt's research aims to document the extent to which the structure and function of aquatic ecosystems is being altered by land use change (urbanization, agriculture, mining) global change (rising CO2, rising sea levels) and chemical pollution. Ultimately this information is necessary to determine whether and how
Gunsch

Claudia K. Gunsch

Professor in the Department of Civil and Environmental Engineering
Claudia Gunsch is the Associate Vice Provost for Faculty Advancement, providing leadership in the area of faculty advancement, including providing support for faculty and academic units as they work to develop policies, programs, and practices in response to the recent campus climate survey. She plays a key role in developing strategies to strengthen Duke’s efforts to ensure an inclusive and respectful environment where faculty, students, and staff can thrive and excel.<
Richardson

Curtis J. Richardson

John O. Blackburn Distinguished Professor
Curtis J. Richardson is Professor of Resource Ecology and founding Director of the Duke University Wetland Center in the Nicholas School of the Environment. Dr. Richardson earned his degrees from the State University of New York and the University of Tennessee. His research interests in applied ecology focus on long-term ecosystem response to large-scale perturbations such as climate change, toxic materials, trace metals, flooding, or nutrient additions. He has specific interests in phosphor
Wright

Justin Prouty Wright

Professor of Biology
My research focuses on understanding the causes and consequences of patterns of biological diversity across the planet. I am particularly interested in two broad questions: 1)How does the modification of the environment by organisms affect community structure and ecosystem function? and 2) what aspects of biodiversity matter most in the regulation of ecosystem function? While much of my research has focused on wetland plant communities, I am willing to study any organism and work in any ecosys
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University