Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Geometry of Cancer

Thumbnail
View / Download
3.3 Mb
Date
2009
Author
Guinney, Justin
Advisor
Mukherjee, Sayan
Repository Usage Stats
626
views
542
downloads
Abstract

Cancer is a complex, multifaceted disease that operates through dynamic changes in the genome. Cancer is best understood through the process that generates it -- random mutations operated on by natural selection -- and several global hallmarks that describe its broad mechanisms. While many genes, protein interactions, and pathways have been enumerated as a kind of ``parts'' list for cancer, researchers are attempting to synthesize broader models for inferring and predicting cancer behavior using high-throughput data and integrative analyses.

The focus of this thesis is on the development of two novel methods that are optimized for the analysis of complex cancer phenotypes. The first method incorporates ideas from gradient learning with multitask learning to assess statistical dependencies across multiple related data sets. The second method integrates multiscale analysis on graphs and manifolds developed in applied harmonic analysis with sparse factor models, a mainstay of applied statistics. This method generates multiscale factors that are used for inferring hierarchical associations within complex biological networks. The primary biological focus is the inference of gene and pathway dependencies associated with cancer progression and metastatic disease in prostate cancer. Significant findings include evidence of Skp2 degradation of the cell-cycle regulator p27, and the upstream deregulation of the TGF-beta pathway, driving prostate cancer recurrence.

Type
Dissertation
Department
Computational Biology and Bioinformatics
Subject
Biology, Bioinformatics
Permalink
https://hdl.handle.net/10161/1578
Citation
Guinney, Justin (2009). The Geometry of Cancer. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/1578.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University