Solving parametric PDE problems with artificial neural networks

Loading...
Thumbnail Image

Date

2017-11-30

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

243
views
199
downloads

Abstract

The curse of dimensionality is commonly encountered in numerical partial differential equations (PDE), especially when uncertainties have to be modeled into the equations as random coefficients. However, very often the variability of physical quantities derived from PDE can be captured by a few features on the space of random coefficients. Based on such observation, we propose using neural-network, a technique gaining prominence in machine learning tasks, to parameterize the physical quantity of interest as a function of random input coefficients. The simplicity and accuracy of the approach are demonstrated through notable examples of PDEs in engineering and physics.

Department

Description

Provenance

Citation

Scholars@Duke

Lu

Jianfeng Lu

Professor of Mathematics

Jianfeng Lu is an applied mathematician interested in mathematical analysis and algorithm development for problems from computational physics, theoretical chemistry, materials science and other related fields.

More specifically, his current research focuses include:
Electronic structure and many body problems; quantum molecular dynamics; multiscale modeling and analysis; rare events and sampling techniques.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.