Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Plants as reef fish: fitting the functional form of seedling recruitment.

Thumbnail
View / Download
791.1 Kb
Date
2007-08
Authors
Poulsen, JR
Osenberg, CW
Clark, CJ
Levey, DJ
Bolker, BM
Repository Usage Stats
90
views
247
downloads
Abstract
The life histories of many species depend first on dispersal to local sites and then on establishment. After dispersal, density-independent and density-dependent mortalities modify propagule supply, determining the number of individuals that establish. Because multiple factors influence recruitment, the dichotomy of propagule versus establishment limitation is best viewed as a continuum along which the strength of propagule or establishment limitation changes with propagule input. To evaluate the relative importance of seed and establishment limitation for plants, we (1) describe the shape of the recruitment function and (2) use limitation and elasticity analyses to quantify the sensitivity of recruitment to perturbations in seed limitation and density-independent and density-dependent mortality. Using 36 seed augmentation studies for 18 species, we tested four recruitment functions against one another. Although the linear model (accounting for seed limitation and density-independent mortality) fitted the largest number of studies, the nonlinear Beverton-Holt model (accounting for density-dependent mortality) performed better at high densities of seed augmentation. For the 18 species, seed limitation constrained population size more than other sources of limitation at ambient conditions. Seedling density reached saturation with increasing seed density in many studies, but at such high densities that seedling density was primarily limited by seed availability rather than microsite availability or density dependence.
Type
Journal article
Subject
Animals
Fishes
Models, Biological
Plant Development
Seedlings
Seeds
Permalink
https://hdl.handle.net/10161/15876
Published Version (Please cite this version)
10.1086/518945
Publication Info
Poulsen, JR; Osenberg, CW; Clark, CJ; Levey, DJ; & Bolker, BM (2007). Plants as reef fish: fitting the functional form of seedling recruitment. Am Nat, 170(2). pp. 167-183. 10.1086/518945. Retrieved from https://hdl.handle.net/10161/15876.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Poulsen

John Poulsen

Associate Professor of Tropical Ecology
John Poulsen is an ecologist with broad interests in the maintenance and regeneration of tropical forests and conservation of biodiversity. His research has focused on the effects of anthropogenic disturbance, such as logging and hunting, on forest structure and diversity, abundance of tropical animals, and ecological processes. He has conducted most of his research in Central Africa, where he has also worked as a conservation manager, directing projects to sustainably manage natural resources i
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University