Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sensorimotor learning during a marksmanship task in immersive virtual reality

Date
2018-01-15
Authors
Appelbaum, Lawrence Gregory
Clements, Jillian
Khanna, Rajan
Kopper, Regis
Lu, Y
Potter, Nicholas
Rao, Hrishikesh
Sommer, Marc A
Zielinski, David
Show More
(9 total)
Repository Usage Stats
159
views
0
downloads
Abstract
Sensorimotor learning refers to improvements that occur through practice in the performance of sensory-guided motor behaviors. Leveraging novel technical capabilities of an immersive virtual environment, we probed the component kinematic processes that mediate sensorimotor learning. Twenty naïve subjects performed a simulated marksmanship task modeled after Olympic Trap Shooting standards. We measured movement kinematics and shooting performance as participants practiced 350 trials while receiving trial-by-trial feedback about shooting success. Spatiotemporal analysis of motion tracking elucidated the ballistic and refinement phases of hand movements. We found systematic changes in movement kinematics that accompanied improvements in shot accuracy during training, though reaction and response times did not change over blocks. In particular, we observed longer, slower, and more precise ballistic movements that replaced effort spent on corrections and refinement. Collectively, these results leverage developments in immersive virtual reality technology to quantify and compare the kinematics of movement during early learning of full body sensorimotor orienting.
Type
Journal article
Subject
Sensorimotor Learning
Full-body Orienting
Perception and Action
Immersive Virtual Reality
Marksmanship
Permalink
https://hdl.handle.net/10161/15995
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Appelbaum

Lawrence Gregory Appelbaum

Adjunct Associate Professor in the Department of Psychiatry and Behavioral Sciences
Greg Appelbaum is an Adjunct Associate Professor in the Department of Psychiatry and Behavioral Sciences in the Duke University School of Medicine.  Dr. Appelbaum's research interests primarily concern the brain mechanisms underlying visual cognition, how these capabilities differ among individuals, and how they can be improved through behavioral, neurofeedback, and neuromodulation interventions. Within the field of cognitive neuroscience, his research has addressed visual pe
Khanna

Ranjana Khanna

Professor of English
Ranjana Khanna is Professor of English, Women's Studies, and the Literature Program at Duke University. She works on Anglo- and Francophone Postcolonial theory and literature, and Film, Psychoanalysis, and Feminist theory. She has published widely on transnational feminism, psychoanalysis, and postcolonial and feminist theory, literature, and film. She is the author of Dark Continents: Psychoanalysis and Colonialism (Duke University Press, 2003) and Algeria Cuts: Women and Representation 1830 to
Kopper

Regis Kopper

Adjunct Assistant Professor in the Department of Mechanical Engineering and Materials Science
Dr. Regis Kopper is an Adjunct Assistant Research Professor of Mechanical Engineering and Materials Science at Duke’s Pratt School of Engineering and the director of the Duke immersive Virtual Environment (DiVE). Dr. Kopper has experience in the design and evaluation of virtual reality systems in the areas of interaction design and modeling, virtual human interaction and in the evaluation of the benefits of immersive systems. At Duke, Dr. Kopper investigates how immersive virtual reality t

Nicholas Potter

Adjunct Associate in the Department of Orthopaedic Surgery
Sommer

Marc A. Sommer

Associate Professor of Biomedical Engineering
We study circuits for cognition. Using a combination of neurophysiology and biomedical engineering, we focus on the interaction between brain areas during visual perception, decision-making, and motor planning. Specific projects include the role of frontal cortex in metacognition, the role of cerebellar-frontal circuits in action timing, the neural basis of "good enough" decision-making (satisficing), and the neural mechanisms of transcranial magnetic stimulation (TMS).
Zielinski

David Zielinski

Analyst, IT
David J. Zielinski is currently a technology specialist for the Duke University OIT Co-Lab (2021-present). Previously the Department of Art, Art History & Visual Studies (2018-2020) and the DiVE Virtual Reality Lab (video) (2004-2018), under the direction of Regis Kopper (2013-2018), Ryan P. McMahan (2012), and Rachael Brady (2004-2012). He received his bachelors (2002) and masters (2004) degrees in Computer Science from the
More Authors
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University