Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Epidemic potential by sexual activity distributions.

Thumbnail
View / Download
5.3 Mb
Date
2017-12
Authors
Moody, James
Adams, Jimi
Morris, Martina
Repository Usage Stats
145
views
134
downloads
Abstract
For sexually transmitted infections like HIV to propagate through a population, there must be a path linking susceptible cases to currently infectious cases. The existence of such paths depends in part on thedegree distribution.Here, we use simulation methods to examine how two features of the degree distribution affect network connectivity: Mean degree captures a volume dimension, while the skewness of the upper tail captures a shape dimension. We find a clear interaction between shape and volume: When mean degree is low, connectivity is greater for long-tailed distributions, but at higher mean degree, connectivity is greater in short-tailed distributions. The phase transition to a giant component and giant bicomponent emerges as a positive function of volume, but it rises more sharply and ultimately reaches more people in short-tail distributions than in long-tail distributions. These findings suggest that any interventions should be attuned to how practices affect both the volume and shape of the degree distribution, noting potential unanticipated effects. For example, policies that primarily affect high-volume nodes may not be effective if they simply redistribute volume among lower degree actors, which appears to exacerbate underlying network connectivity.
Type
Journal article
Subject
cohesion
connectivity
degree distributions
dynamic network diffusion
sexually transmitted infections
simulation
Permalink
https://hdl.handle.net/10161/16104
Published Version (Please cite this version)
10.1017/nws.2017.3
Publication Info
Moody, James; Adams, Jimi; & Morris, Martina (2017). Epidemic potential by sexual activity distributions. Netw Sci (Camb Univ Press), 5(4). pp. 461-475. 10.1017/nws.2017.3. Retrieved from https://hdl.handle.net/10161/16104.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Moody

James Moody

Professor in the Department of Sociology
James Moody is the Robert O. Keohane professor of sociology at Duke University. He has published extensively in the field of social networks, methods, and social theory. His work has focused theoretically on the network foundations of social cohesion and diffusion, with a particular emphasis on building tools and methods for understanding dynamic social networks. He has used network models to help understand school racial segregation, adolescent health, disease spread, economic development, a
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Support the Libraries
Duke University