Treatment with Imatinib in NSCLC is associated with decrease of phosphorylated PDGFR-beta and VEGF expression, decrease in interstitial fluid pressure and improvement of oxygenation.

Loading...
Thumbnail Image

Date

2006-10-23

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

112
views
26
downloads

Citation Stats

Abstract

Elevated intratumoral interstitial fluid pressure (IFP) and tumour hypoxia are independent predictive factors for poor survival and poor treatment response in cancer patients. However, the relationship between IFP and tumour hypoxia has not yet been clearly established. Preclinical studies have shown that lowering IFP improves treatment response to cytotoxic therapy. Interstitial fluid pressure can be reduced by inhibition of phosphorylated platelet-derived growth factor receptor-beta (p-PDGFR-beta), a tyrosine kinase receptor frequently overexpressed in cancer stroma, and/or by inhibition of VEGF, a growth factor commonly overexpressed in tumours overexpressing p-PDGFR-beta. We hypothesised that Imatinib, a specific PDGFR-beta inhibitor will, in addition to p-PDGFR-beta inhibition, downregulate VEGF, decrease IFP and improve tumour oxygenation. A549 human lung adenocarcinoma xenografts overexpressing PDGFR-beta were grown in nude mice. Tumour-bearing animals were randomised to control and treatment groups (Imatinib 50 mg kg(-1) via gavage for 4 days). Interstitial fluid pressure was measured in both groups before and after treatment. EF5, a hypoxia marker, was administered 3 h before being killed. Tumours were sectioned and stained for p-PDGFR-beta, VEGF and EF5 binding. Stained sections were viewed with a fluorescence microscope and image analysis was performed. Imatinib treatment resulted in significant reduction of p-PDGFR-beta, VEGF and IFP. Tumour oxygenation was also significantly improved. This study shows that p-PDGFR-beta-overexpressing tumours can be effectively treated with Imatinib to decrease tumour IFP. Importantly, this is the first study demonstrating that Imatinib treatment improves tumour oxygenation and downregulates tumour VEGF expression.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1038/sj.bjc.6603366

Publication Info

Vlahovic, G, ZN Rabbani, JE Herndon, MW Dewhirst and Z Vujaskovic (2006). Treatment with Imatinib in NSCLC is associated with decrease of phosphorylated PDGFR-beta and VEGF expression, decrease in interstitial fluid pressure and improvement of oxygenation. Br J Cancer, 95(8). pp. 1013–1019. 10.1038/sj.bjc.6603366 Retrieved from https://hdl.handle.net/10161/16114.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Vlahovic

Gordana Vlahovic

Adjunct Associate Professor in the Department of Medicine
Herndon

James Emmett Herndon

Professor of Biostatistics & Bioinformatics

Current research interests have application to the design and analysis of cancer clinical trials. Specifically, interests include the use of time-dependent covariables within survival models, the design of phase II cancer clinical trials which minimize some of the logistical problems associated with their conduct, and the analysis of longitudinal studies with informative censoring (in particular, quality of life studies of patients with advanced cancer).

Dewhirst

Mark Wesley Dewhirst

Gustavo S. Montana Distinguished Professor Emeritus of Radiation Oncology

Mark W. Dewhirst, DVM, PhD is the Gustavo S. Montana Professor of Radiation Oncology and Vice Director for Basic Science in the Duke Cancer Institute. Dr. Dewhirst has research interests in tumor hypoxia, angiogenesis, hyperthermia and drug transport. He has spent 30 years studying causes of tumor hypoxia and the use of hyperthermia to treat cancer. In collaboration with Professor David Needham in the Pratt School of Engineering, he has developed a novel thermally sensitive drug carrying liposome that has been successfully translated to human clinical trials. He has utilized the thermal characteristics of this liposome to develop an MR imageable form that can accurately reflect drug concentrations in tumors, which then is related to the extent of anti-tumor effect in pre-clinical models. This property has been widely used by other investigators, world-wide, particularly in the area of high intensity focused ultrasound, where it would be possible to literally paint drug to a target zone and visualize this process in real time, during heating. For his work in this area, Dr. Dewhirst was named a Fellow in the AAAS. Dr. Dewhirst has well over 500 peer-reviewed publications, book chapters and reviews, with >20,000 citations and an H-index of 73. He has given named lectures at the University of Western Ontario, Thomas Jefferson University and the New Zealand Cancer Society. He was awarded the Failla Medal and Lecture at the Radiation Research Society in 2008, the Eugene Robinson award for excellence hyperthermia research in 1992 and a similar award from the European Society for Hyperthermic Oncology in 2009. He was named a fellow of ASTRO in 2009 and was awarded the prestigious Gold Medal from the same society in 2012. He is a Senior Editor of Cancer Research and Editor-in-Chief of the International Journal of Hyperthermia. He has mentored 24 graduate students, and many postdoctoral fellows, residents, junior faculty and medical students. He has been particularly skillful in assisting those he has mentored to obtain DOD and NIH fellowships, K awards and first R01 grants. His skill in mentoring has been recognized by the Duke Comprehensive Cancer Center, the Medical Physics Graduate Training programs and the School of Medicine, where he has received “Mentor of the Year” awards. In 2011 he was selected to become the first Associate Dean of Faculty Mentoring in the Duke School of Medicine. In this position, he is implementing a comprehensive program to enhance success in obtaining NIH funding. He graduated from the University of Arizona in 1971 with a degree in Chemistry and Colorado State University in 1975 and 1979 with DVM and PhD degrees, respectively.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.