Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Physically Motivated Feature Development for Machine Learning Applications

Thumbnail
View / Download
5.3 Mb
Date
2017
Author
Czarnek, Nicholas
Advisor
Collins, Leslie
Repository Usage Stats
255
views
252
downloads
Abstract

Feature development forms a cornerstone of many machine learning applications. In this work, we develop features, motivated by physical or physiological knowledge, for several applications: energy disaggregation, brain cancer prognosis, and landmine detection with seismo-acoustic vibrometry (SAVi) sensors. For event-based energy disaggregation, or the automated process of extracting component specific energy data from a building's aggregate power signal, we develop low dimensional features that capture transient information near changes in energy signals. These features reflect the circuit composition of devices comprising the aggregate signal and enable classifiers to discriminate between devices. To develop image based biomarkers, which may help clinicians develop treatment strategies for patients with glioblastoma brain tumors, we exploit physiological evidence that certain genes are both predictive of patient survival and correlated with tumor shape. We develop features that summarize tumor shapes and therefore serve as surrogates for the genetic content of tumors, allowing survival prediction. Our final analysis and the main focus of this document is related to landmine detection using SAVi sensors. We exploit knowledge of both landmine shapes and the interactions between acoustic excitation and the ground's vibration response to develop features that are indicative of target presence. Our analysis, which employs these novel features, is the first evaluation of a large dataset recorded under realistic conditions and provides evidence for the utility of SAVi systems for use in combat arenas.

Type
Dissertation
Department
Electrical and Computer Engineering
Subject
Electrical engineering
Energy disaggregation
Glioblastoma
Machine learning
Seismo acoustic vibrometry
Signals processing
Permalink
https://hdl.handle.net/10161/16279
Citation
Czarnek, Nicholas (2017). Physically Motivated Feature Development for Machine Learning Applications. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/16279.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University