Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effects of Vegetation and Infiltration Feedbacks on Hydrologic Partitioning and Droughts

Thumbnail
View / Download
4.2 Mb
Date
2017
Author
Wilson, Tiffany Gale
Advisors
Albertson, John D
Porporato, Amilcare M
Repository Usage Stats
84
views
218
downloads
Abstract

This dissertation addresses feedbacks between vegetation dynamics and land surface response to rainfall events, particularly in Mediterranean climates. Specifically, we ask how a saturated hydraulic conductivity value (ks) that is tied to vegetation biomass affects how water is divided into infiltration and runoff under a range of conditions. First, a field campaign in Sardinia was conducted in which a 4 m by 4 m rainfall simulator was constructed and deployed on a number of dates. Measurements of surface runoff from the plot and soil moisture within the plot informed estimates of the effective ks for each experimental run, and a comparison between ks and vegetation height measurements revealed a monotonically increasing relationship between the two. We then fit a logistic equation to this relationship and incorporated it into the calculations of a coupled vegetation dynamics and land surface model. Using the model, which is calibrated for the Sardinia field site, we investigated the effect of the variable ks by comparing the model results of biomass, saturation, and runoff to results using a static ks. We then used the same model to investigate the effects of a variable ks on drought recovery by simulating drought severity through a range of biomass levels relative to a no-drought condition. Our modeling results revealed that the primary result of a variable ks is modification of the quantity and mechanism of surface runoff; specifically, runoff increased over the constant ks case and shifted from saturation excess runoff to infiltration excess runoff. These effects are more pronounced in drier conditions and when rainfall intensities are in a critical region similar to the ks value. We conclude that a dynamic ks value is relevant for prediction of surface runoff and may improve the performance of land surface models.

Type
Dissertation
Department
Civil and Environmental Engineering
Subject
Environmental engineering
Hydrologic sciences
Ecology
drought
runoff
saturated hydraulic conductivity
semi-arid
soil properties
vegetation dynamics
Permalink
https://hdl.handle.net/10161/16282
Citation
Wilson, Tiffany Gale (2017). Effects of Vegetation and Infiltration Feedbacks on Hydrologic Partitioning and Droughts. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/16282.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University