Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Microelectrode Array Modeling of Genetic Neurological Disorders in the Era of Next Generation Sequencing

Thumbnail
View / Download
13.0 Mb
Date
2017
Author
McSweeney, Keisha Melodi
Advisor
Goldstein, David B
Repository Usage Stats
122
views
234
downloads
Abstract

Advances in next-generation sequencing (NGS) and the ability to sequence the entire genome of many individuals in a cost-effective manner has led to the revelation of the genetic etiologies of a number of neurological disorders. Parallel advancements in predictive software, for example, have allowed for the annotation of potentially pathogenic variants. However, the development of appropriate systems to functionally interpret variants and identify pathogenic mechanisms has lagged behind. Understanding pathogenic mechanisms is crucial to the development of targeted therapeutics. Therefore, the main challenge to translating genetic findings into targeted therapeutics is functional modeling.

Increased understanding of the genetic architecture of epilepsy and the hyperexcitability that results from many epilepsy-causing variants makes the disease particularly well-suited for the development of model systems for functional interpretation of genetic variation. To capture the effects of genetic variation in neurological diseases, like epilepsy, complex cellular systems are crucial. In my thesis I describe a paradigm that addresses the need for complex cellular systems. The paradigm utilizes cultured neural networks (CNNs) that can be collected either from mouse models or derived from human induced stem cell models (hIPSCs). CNNs retain much of the electrical and network forming capabilities of the intact brain. CNNs plated onto multi-well microelectrode arrays (CNN-MEAs), which capture extracellular activity of electrically active cells, therefore offer a particularly appealing cellular system for the investigation of genetic variants that cause neurological disorders.

In chapter one I review the history of genetics and epilepsy. I discuss how studies of genetic variants that cause epilepsy give insights into the mechanisms of a wide scope of neurological disorders. I suggest that epilepsy is therefore a good place to start in the development of cellular models of disease and targeted therapeutic options. I next introduce the MEA as a platform capable of capturing important electrophysiological data from CNNs, creating the foundations for chapters two and three.

Chapter two describes one application of the CNN-MEA paradigm in which we inhibited microRNA (miRNA) expression in vitro and evaluated the resulting activity profiles. MiRNAs are increasingly linked to epileptogenesis. We show that small differences in miRNA expression can have large effects on network activity. Chapter two offers a proof-of-principle of the utility of the CNN-MEA paradigm in capturing pathogenic hyperexcitability.

Chapter three discusses a second application in which mutations in the ATP1A3 gene were evaluated. Mutations in ATP1A3 cause at least four distinct disorders and it is not yet fully understood how mutations mediate pathophysiologic consequences. We first investigate ATP1A3 mutations in COS7 cells and observe no clear differences. We next evaluate the effect of two mutations that cause the most severe ATP1A3-associated disorder, Alternating Hemiplegia of Childhood (AHC), on network dynamics. We show that mutant cultures demonstrate hypersynchronous activity and distorted bursting properties when compared to wild-type. Using strategic pharmacological manipulation, we illustrate the role of GABA neurotransmission on aberrant network dynamics and further show the partial rescue of activity phenotypes using adenosine triphosphate (ATP) and an anti-epileptic drug. Chapter three illustrates the shortcomings of heterologous cell modeling and provides additional support for the use of CNN-MEAs to study genetic variation.

The CNN-MEA paradigm provides a promising method to evaluate the effect of mutations that cause neurological disorders. Furthermore, with the use of multi-well MEAs, this paradigm provides a scalable option to evaluate multiple parameters simultaneously. Understanding the functional impact of genetic variation using the CNN-MEA paradigm is a crucial step to developing targeted therapeutics.

Type
Dissertation
Department
Genetics and Genomics
Subject
Neurosciences
Genetics
Biology
epilepsy
microelectrode array
microRNAs
neural activity
Permalink
https://hdl.handle.net/10161/16325
Citation
McSweeney, Keisha Melodi (2017). Microelectrode Array Modeling of Genetic Neurological Disorders in the Era of Next Generation Sequencing. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/16325.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University