Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Development and Application of Mass Spectrometry-Based Approaches for Thermodynamic Analysis of Protein-Ligand Binding Interactions

Thumbnail
View / Download
5.5 Mb
Date
2017
Author
Jin, Xiaopu
Advisor
Fitzgerald, Michael C
Repository Usage Stats
144
views
88
downloads
Abstract

The characterization of protein stability changes and protein-ligand interactions on the proteomic scale is important for understanding the biology of cellular processes. The identification and quantification of protein-ligand binding affinities is critical for disease state analyses and drug discovery. A mass spectrometry-based technique, Stability of Proteins from Rates of Oxidation (SPROX), has been established for the thermodynamic analysis of protein stability and protein-ligand interactions. In the first part of this dissertation, a previously published iTRAQ-SPROX protocol is improved by incorporating a filter assisted sample preparation (FASP) protocol to significantly reduce sample loss during the experiment. Also, in order to eliminate methionine as a potential contaminant that can cause signal suppression during LC-MS/MS analysis, TCEP•HCl is used to quench the H2O2 oxidation instead of methionine. This avoids the potential reaction between the free methionine and the iTRAQ reagents. The improved protocol, referred to hereafter as the iTRAQ-FASP-SPROX protocol, is shown to increase the peptide/protein coverages for less concentrated cell lysate samples, and it is applied here to study the protein-ligand interaction networks between human ARPE-19 cells lysis and two different iron chelators (HAPI and Exjade). Information on potential protein targets of these two iron chelators are reported.

In the second part of this dissertation, a targeted MS-based approach for protein-ligand binding analysis is developed to analyze targeted subsets of proteins in a proteome. The so-called PAB-SPROX protocol is demonstrated to be applicable for the detection and relative quantitation of targeted methionine-containing peptides in +/- ligand samples by using isotopically labeled light and heavy PAB (i.e. 12C6-PAB and 13C6-PAB). Multiple reaction monitoring (MRM) and parallel reaction monitoring (PRM) methods are demonstrated to be amenable to PAB-SPROX analyses. In addition to proof-of-principle studies involving the cylclophilin A-cyclosporine A binding interaction, the PAB-SPROX protocol was used to validate the direct interaction between YBX1 protein and tamoxifen using very limited amount of purified YBX1 protein. Applications of PAB-SPROX protocol have also included the validation of potential binding targets of Staurosporine, Manassatin A and Tamoxifen. The PAB-SPROX studies with these latter ligands facilitated the identification of false positives in previous proteome-wide SRPOX studies.

Type
Dissertation
Department
Chemistry
Subject
Chemistry
Ligand-binding analysis
MRM
PRM
Proteomics
Permalink
https://hdl.handle.net/10161/16392
Citation
Jin, Xiaopu (2017). Development and Application of Mass Spectrometry-Based Approaches for Thermodynamic Analysis of Protein-Ligand Binding Interactions. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/16392.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University