Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Undergraduate Honors Theses and Student papers
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Undergraduate Honors Theses and Student papers
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

SVRG Escapes Saddle Points

Thumbnail
View / Download
697.5 Kb
Date
2018-04-25
Author
Wang, Weiyao
Advisor
Ge, Rong
Repository Usage Stats
233
views
455
downloads
Abstract
In this paper, we consider a fundamental problem of non-convex optimization that has wide applications and implications in machine learning. Previous works have shown that stochastic gradient descent with the variance reduction technique (SVRG) converges to a first-order stationary point in O(n^(2/3)/ε^2) iterations in non-convex settings. However, many problems in non-convex optimization requires an efficient way to find second- order stationary points that are a subset of first-order stationary points, and therefore algorithms that converges to a first-order stationary point are not satisfying. This paper shows how SVRG converges to a second-order stationary point in non-convex setting with a uniformly random perturbation. To find an ε-second-order stationary point, it takes O( n^(3/4)polylog(d/(nε))/ε^2 ) iterations. In comparison with the convergence rate of SVRG to a first-order stationary point, the loss in convergence rate only depends poly- logarithmically on the dimension d and involves a small polynomial of n, O(n^(1/12) ). This is the best known result in finding second-order stationary point. We also give some intuitions and proof sketches to a new framework of analysis using the stable manifold theorem. The analysis from the new framework may help to eliminate the n^(1/12) loss from our current analysis. Our results can be directly applied to problems such as the training of neural networks and tensor decomposition. The intuition of stable manifold may provide independent interest to the non-convex optimization community.
Type
Honors thesis
Department
Computer Science
Subject
Non-convex Optimization
Machine Learning
Optimization
Deep Learning
Permalink
https://hdl.handle.net/10161/16663
Citation
Wang, Weiyao (2018). SVRG Escapes Saddle Points. Honors thesis, Duke University. Retrieved from https://hdl.handle.net/10161/16663.
Collections
  • Undergraduate Honors Theses and Student papers
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Undergraduate Honors Theses and Student papers


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University